-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_betterERE.py
133 lines (103 loc) · 4.8 KB
/
main_betterERE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import datetime
import gym
import numpy as np
import itertools
import torch
from sac.sac_better import SAC
from torch.utils.tensorboard import SummaryWriter
from sac.ere_prio_replay import PrioritizedReplay
from sac.replay_memory import ReplayMemory
parser = argparse.ArgumentParser(description='Soft Actor-Critic Args')
parser.add_argument('--env-name', default="LunarLanderContinuous-v2")
parser.add_argument('--policy', default="Gaussian")
parser.add_argument('--gamma', type=float, default=0.99, metavar='G')
parser.add_argument('--tau', type=float, default=0.005, metavar='G')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G')
parser.add_argument('--alpha', type=float, default=0.2, metavar='G')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=True, metavar='G')
parser.add_argument('--seed', type=int, default=111111, metavar='N')
parser.add_argument('--batch_size', type=int, default=8, metavar='N')
parser.add_argument('--num_steps', type=int, default=1000001, metavar='N')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N')
parser.add_argument('--start_steps', type=int, default=10000, metavar='N')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N')
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N')
args = parser.parse_args()
args.cuda =True if torch.cuda.is_available() else False
# Environment
# env = NormalizedActions(gym.make(args.env_name))
env = gym.make(args.env_name)
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Agent
agent = SAC(env.observation_space.shape[0], env.action_space, args)
#Tesnorboard
writer = SummaryWriter('runs/{}_SAC_{}_{}_{}'.format(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), args.env_name,
args.policy, "autotune" if args.automatic_entropy_tuning else ""))
# Memory
memory = PrioritizedReplay(args.replay_size)
# Training Loop
total_numsteps = 0
updates = 0
eta_0 = 0.996
eta_T = 1.0
max_ep_len = 1000
c_k_min = 2500 # original = 5000
for i_episode in itertools.count(1):
episode_reward = 0
episode_steps = 0
done = False
state = env.reset()
while not done:
if args.start_steps > total_numsteps:
action = env.action_space.sample() # Sample random action
else:
action = agent.select_action(state) # Sample action from policy
next_state, reward, done, _ = env.step(action) # Step
episode_steps += 1
total_numsteps += 1
episode_reward += reward
# Ignore the "done" signal if it comes from hitting the time horizon.
mask = 1 if episode_steps == env._max_episode_steps else float(not done)
memory.push(state, action, reward, next_state, mask)
eta_t = eta_0 + (eta_T - eta_0)*(total_numsteps/args.num_steps)
state = next_state
if total_numsteps > args.num_steps:
break
for k in range(1,episode_steps):
c_k = max(int(len(memory)*eta_t**(k*(env._max_episode_steps/episode_steps))), c_k_min)
for i in range(args.updates_per_step):
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters(memory, args.batch_size, updates,c_k=c_k)
# memory=memory_
writer.add_scalar('loss/critic_1', critic_1_loss, updates)
writer.add_scalar('loss/critic_2', critic_2_loss, updates)
writer.add_scalar('loss/policy', policy_loss, updates)
writer.add_scalar('loss/entropy_loss', ent_loss, updates)
writer.add_scalar('entropy_temprature/alpha', alpha, updates)
updates += 1
writer.add_scalar('reward/train', episode_reward, i_episode)
print("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}".format(i_episode, total_numsteps, episode_steps, round(episode_reward, 2)))
if i_episode % 10 == 0:
avg_reward = 0.
episodes = 10
for _ in range(episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, evaluate=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
avg_reward += episode_reward
avg_reward /= episodes
writer.add_scalar('avg_reward/test', avg_reward, i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}".format(episodes, round(avg_reward, 2)))
print("----------------------------------------")
env.close()