-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_func.py
47 lines (42 loc) · 1.55 KB
/
train_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
'Computes and stores the average and current value.'
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
' network training function '
def train_net(net, device, loader, optimizer, loss_f, batch_size):
net.train()
train_loss = AverageMeter()
for batch_idx, (input, gt, weights) in enumerate(loader):
input, gt = input.to(device), gt.to(device) # Send data to GPU
output = net(input) # Forward
loss = loss_f(output, gt) # Loss calculation
train_loss.update(loss.item(), output.size(0)) # Update the record
# Back propagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(' Train_Loss: ' + str(round(train_loss.avg, 6)), end=" ")
return train_loss.avg
' network validating function '
def val_net(net, device, loader, loss_f, batch_size):
net.eval()
val_loss = AverageMeter()
with torch.no_grad():
for batch_idx, (input, gt, gt ) in enumerate(loader):
input, gt = input.to(device), gt.to(device) # Send data to GPU
output = net(input) # Forward
loss = loss_f(output, gt) # Loss calculation
val_loss.update(loss.item(), output.size(0)) # Update the record
print(' Val_loss: ' + str(round(val_loss.avg, 6)))
return val_loss.avg