Skip to content

krlberry/autocnet

 
 

Repository files navigation

AutoCNet

Join the chat at https://gitter.im/USGS-Astrogeology/autocnet https://travis-ci.org/USGS-Astrogeology/autocnet.svg?branch=master https://coveralls.io/repos/USGS-Astrogeology/autocnet/badge.svg?branch=master&service=github Documentation Status 'Stories in Ready'

Automated sparse control network generation to support photogrammetric control of planetary image data.

Installation Instructions

We suggest using Anaconda Python to install Autocnet within a virtual environment. These steps will walk you through the process.

  1. [Download](https://www.continuum.io/downloads) and install the Python 3.x Miniconda installer. Respond Yes when prompted to add conda to your BASH profile.
  1. (Optional) We like to sequester applications in their own environments to avoid any dependency conflicts. To do this:
  • conda create -n <your_environment_name> python=3 && source activate <your_environment_name>
  1. Bring up a command line and add three channels to your conda config (~/condarc):
  • conda config --add channels conda-forge
  • conda condig --add channels jlaura
  • conda config --add channels menpo
  1. Finally, install autocnet: conda install -c jlaura autocnet-dev

About

Automatic control network generation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 91.3%
  • Python 8.6%
  • Other 0.1%