diff --git a/.gitignore b/.gitignore index ffe84ea..f293e6d 100644 --- a/.gitignore +++ b/.gitignore @@ -2,9 +2,13 @@ __pycache__/ *.py[cod] -# Test things +# Internal test notebooks *test*.ipynb +# xagg /wm/ directories created during docs processing +wm/ +docs/notebooks/wm/ + # C extensions *.so diff --git a/docs/notebooks/base_run.ipynb b/docs/notebooks/base_run.ipynb index 4d7c404..cfc77c5 100644 --- a/docs/notebooks/base_run.ipynb +++ b/docs/notebooks/base_run.ipynb @@ -6,7 +6,7 @@ "metadata": {}, "source": [ "# Base run\n", - "A simple run of `xagg`, aggregating gridded temperature data over US counties. For a deeper dive into `xagg`'s functionality, see the [Detailed Code Run](./full_run.ipynb)." + "A simple run of `xagg`, aggregating gridded temperature data over US counties. For a deeper dive into `xagg`'s functionality, see the [Detailed Code Run](./full_run.ipynb). " ] }, { @@ -38,10 +38,455 @@ "execution_count": 2, "id": "simple-spelling", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
<xarray.Dataset>\n", + "Dimensions: (lon: 288, lat: 192, month: 12, bnds: 2)\n", + "Coordinates:\n", + " height float64 ...\n", + " * lon (lon) float64 0.0 1.25 2.5 3.75 5.0 ... 355.0 356.2 357.5 358.8\n", + " * lat (lat) float64 -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0\n", + " * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " lat_bnds (month, lat, bnds) float64 ...\n", + " lon_bnds (month, lon, bnds) float64 ...\n", + " tas (month, lat, lon) float32 ...
\n", + " | NAME | \n", + "STATE_NAME | \n", + "STATE_FIPS | \n", + "CNTY_FIPS | \n", + "FIPS | \n", + "geometry | \n", + "
---|---|---|---|---|---|---|
0 | \n", + "Lake of the Woods | \n", + "Minnesota | \n", + "27 | \n", + "077 | \n", + "27077 | \n", + "POLYGON ((-95.34283 48.54668, -95.34105 48.715... | \n", + "
1 | \n", + "Ferry | \n", + "Washington | \n", + "53 | \n", + "019 | \n", + "53019 | \n", + "POLYGON ((-118.85163 47.94956, -118.84846 48.4... | \n", + "
2 | \n", + "Stevens | \n", + "Washington | \n", + "53 | \n", + "065 | \n", + "53065 | \n", + "POLYGON ((-117.43883 48.04412, -117.54219 48.0... | \n", + "
3 | \n", + "Okanogan | \n", + "Washington | \n", + "53 | \n", + "047 | \n", + "53047 | \n", + "POLYGON ((-118.97209 47.93915, -118.97406 47.9... | \n", + "
4 | \n", + "Pend Oreille | \n", + "Washington | \n", + "53 | \n", + "051 | \n", + "53051 | \n", + "POLYGON ((-117.43858 48.99992, -117.03205 48.9... | \n", + "
<xarray.Dataset>\n", - "Dimensions: (month: 12, pix_idx: 3141)\n", + "Dimensions: (poly_idx: 3141, month: 12)\n", "Coordinates:\n", - " * pix_idx (pix_idx) int64 0 1 2 3 4 5 6 ... 3135 3136 3137 3138 3139 3140\n", + " * poly_idx (poly_idx) int64 0 1 2 3 4 5 6 ... 3135 3136 3137 3138 3139 3140\n", " * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12\n", "Data variables:\n", - " NAME (pix_idx) object 'Lake of the Woods' 'Ferry' ... 'Broomfield'\n", - " STATE_NAME (pix_idx) object 'Minnesota' 'Washington' ... 'Colorado'\n", - " STATE_FIPS (pix_idx) object '27' '53' '53' '53' ... '02' '02' '02' '08'\n", - " CNTY_FIPS (pix_idx) object '077' '019' '065' '047' ... '240' '068' '014'\n", - " FIPS (pix_idx) object '27077' '53019' '53065' ... '02068' '08014'\n", - " tas (pix_idx, month) float64 263.9 268.8 274.0 ... 283.5 276.4 270.4
array([ 0, 1, 2, ..., 3138, 3139, 3140])
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
array(['Lake of the Woods', 'Ferry', 'Stevens', ...,\n", - " 'Southeast Fairbanks', 'Denali', 'Broomfield'], dtype=object)
array(['Minnesota', 'Washington', 'Washington', ..., 'Alaska', 'Alaska',\n", - " 'Colorado'], dtype=object)
array(['27', '53', '53', ..., '02', '02', '08'], dtype=object)
array(['077', '019', '065', ..., '240', '068', '014'], dtype=object)
array(['27077', '53019', '53065', ..., '02240', '02068', '08014'],\n", - " dtype=object)
array([[263.91894338, 268.83407312, 273.97753272, ..., 283.79866008,\n", + " NAME (poly_idx) object 'Lake of the Woods' 'Ferry' ... 'Broomfield'\n", + " STATE_NAME (poly_idx) object 'Minnesota' 'Washington' ... 'Colorado'\n", + " STATE_FIPS (poly_idx) object '27' '53' '53' '53' ... '02' '02' '02' '08'\n", + " CNTY_FIPS (poly_idx) object '077' '019' '065' '047' ... '240' '068' '014'\n", + " FIPS (poly_idx) object '27077' '53019' '53065' ... '02068' '08014'\n", + " tas (poly_idx, month) float64 263.9 268.8 274.0 ... 276.4 270.4
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,\n", + " ...\n", + " 3131, 3132, 3133, 3134, 3135, 3136, 3137, 3138, 3139, 3140],\n", + " dtype='int64', name='poly_idx', length=3141))
PandasIndex(Index([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype='int64', name='month'))
3141 rows × 17 columns
\n", + "37692 rows × 6 columns
\n", "" ], "text/plain": [ - " NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS \\\n", - "0 Lake of the Woods Minnesota 27 077 27077 \n", - "1 Ferry Washington 53 019 53019 \n", - "2 Stevens Washington 53 065 53065 \n", - "3 Okanogan Washington 53 047 53047 \n", - "4 Pend Oreille Washington 53 051 53051 \n", - "... ... ... ... ... ... \n", - "3136 Skagway-Hoonah-Angoon Alaska 02 232 02232 \n", - "3137 Yukon-Koyukuk Alaska 02 290 02290 \n", - "3138 Southeast Fairbanks Alaska 02 240 02240 \n", - "3139 Denali Alaska 02 068 02068 \n", - "3140 Broomfield Colorado 08 014 08014 \n", - "\n", - " tas0 tas1 tas2 tas3 tas4 tas5 \\\n", - "0 263.918943 268.834073 273.977533 283.141960 290.623952 297.858885 \n", - "1 271.794169 275.631364 276.947080 279.837102 286.630023 293.769471 \n", - "2 272.113155 275.910279 277.355354 280.428965 287.247099 294.356788 \n", - "3 271.772021 275.539162 276.654805 279.317270 285.794503 292.650947 \n", - "4 271.721285 275.542011 276.993355 280.157156 287.086018 294.169635 \n", - "... ... ... ... ... ... ... \n", - "3136 270.709185 272.455135 273.717142 276.188285 281.253285 286.791100 \n", - "3137 263.970656 263.404975 266.670047 272.394716 280.492861 288.813169 \n", - "3138 262.846312 263.000185 265.438037 270.754788 278.476096 286.669566 \n", - "3139 265.084342 264.547936 267.203954 271.782649 278.898267 287.059920 \n", - "3140 270.803864 273.430206 275.955505 280.790070 287.303619 292.830048 \n", - "\n", - " tas6 tas7 tas8 tas9 tas10 tas11 \n", - "0 302.068017 300.362248 293.471128 283.798660 275.109100 266.016176 \n", - "1 299.073178 297.151514 289.866690 281.648927 276.727886 272.256934 \n", - "2 299.847098 297.967740 290.637124 282.076344 277.019222 272.516056 \n", - "3 297.741617 295.915714 289.090624 281.372544 276.598377 272.208944 \n", - "4 299.503768 297.523382 290.086946 281.657134 276.644670 272.095152 \n", - "... ... ... ... ... ... ... \n", - "3136 288.361128 287.822862 284.093411 278.681980 274.221760 271.175471 \n", - "3137 288.513645 285.724033 280.243361 273.044271 266.155923 265.022613 \n", - "3138 287.315147 284.920161 279.230840 271.713061 264.946526 263.297936 \n", - "3139 287.375217 285.069283 279.833609 272.514117 266.145088 265.682660 \n", - "3140 297.615662 297.646820 292.368988 283.544708 276.383606 270.444855 \n", - "\n", - "[3141 rows x 17 columns]" + " NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS \\\n", + "poly_idx month \n", + "0 1 Lake of the Woods Minnesota 27 077 27077 \n", + " 2 Lake of the Woods Minnesota 27 077 27077 \n", + " 3 Lake of the Woods Minnesota 27 077 27077 \n", + " 4 Lake of the Woods Minnesota 27 077 27077 \n", + " 5 Lake of the Woods Minnesota 27 077 27077 \n", + "... ... ... ... ... ... \n", + "3140 8 Broomfield Colorado 08 014 08014 \n", + " 9 Broomfield Colorado 08 014 08014 \n", + " 10 Broomfield Colorado 08 014 08014 \n", + " 11 Broomfield Colorado 08 014 08014 \n", + " 12 Broomfield Colorado 08 014 08014 \n", + "\n", + " tas \n", + "poly_idx month \n", + "0 1 263.918943 \n", + " 2 268.834073 \n", + " 3 273.977533 \n", + " 4 283.141960 \n", + " 5 290.623952 \n", + "... ... \n", + "3140 8 297.646820 \n", + " 9 292.368988 \n", + " 10 283.544708 \n", + " 11 276.383606 \n", + " 12 270.444855 \n", + "\n", + "[37692 rows x 6 columns]" ] }, "execution_count": 7, diff --git a/docs/notebooks/full_run.ipynb b/docs/notebooks/full_run.ipynb index 331e3ba..349c46e 100644 --- a/docs/notebooks/full_run.ipynb +++ b/docs/notebooks/full_run.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "broken-labor", "metadata": {}, "outputs": [], @@ -40,6 +40,29 @@ "Let's get started." ] }, + { + "cell_type": "markdown", + "id": "c278bcbd-0e54-47a5-ae50-0d0fae0d6565", + "metadata": {}, + "source": [ + "### Extra downloads\n", + "Since we will be using an extra `weights` file that must be regridded, we need the optional dependency :py:mod:`xesmf`, which we can install through: \n", + "\n", + "`mamba install -c conda-forge xesmf`\n", + "\n", + "Since we will be using the optional feature :py:meth:`.diag_fig()`, we need the optional dependencies :py:mod:`matplotlib`, :py:mod:`cartopy`, and :py:mod:`cmocean`, which we can install through: \n", + "\n", + "`mamba install -c conda-forge matplotlib cartopy cmocean`" + ] + }, + { + "cell_type": "markdown", + "id": "a3de1c17-f535-46eb-8cc2-f7a19ab1aa58", + "metadata": {}, + "source": [ + "### Load data" + ] + }, { "cell_type": "code", "execution_count": 2, @@ -112,23 +135,7 @@ "output_type": "stream", "text": [ "creating polygons for each pixel...\n", - "regridding weights to data grid...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/kevinschwarzwald/opt/anaconda3/envs/test/lib/python3.9/site-packages/xarray/core/dataarray.py:746: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", - " return key in self.data\n", - "/Users/kevinschwarzwald/opt/anaconda3/envs/test/lib/python3.9/site-packages/xesmf/frontend.py:466: FutureWarning: ``output_sizes`` should be given in the ``dask_gufunc_kwargs`` parameter. It will be removed as direct parameter in a future version.\n", - " dr_out = xr.apply_ufunc(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "regridding weights to data grid...\n", "calculating overlaps between pixels and output polygons...\n", "success!\n" ] @@ -139,6 +146,14 @@ "weightmap = xa.pixel_overlaps(ds,gdf,weights=ds_pop.pop)" ] }, + { + "cell_type": "markdown", + "id": "2e6c1fd7-a2d6-4ea8-8c38-441b62247a3e", + "metadata": {}, + "source": [ + "### Exporting / Importing the weightmap " + ] + }, { "cell_type": "markdown", "id": "ee2451e7-2e92-4cee-9d28-7b51625928ec", @@ -149,13 +164,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "9b5ba5c3-03ce-4fdb-866d-a937295b83f8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/kevinschwarzwald/opt/anaconda3/envs/xagg0320/lib/python3.12/site-packages/xagg/export.py:17: UserWarning: export_weightmap() is still an experimental feature. use with care.\n", + " warnings.warn('export_weightmap() is still an experimental feature. use with care.')\n" + ] + } + ], "source": [ - "# Export weightmap\n", - "weightmap.to_file('wm')" + "# Export weightmap to a directory called \"wm\" in the current directory\n", + "weightmap.to_file('./wm')" ] }, { @@ -168,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "a6f23714-51b8-43f6-8fda-49299c6b56fc", "metadata": {}, "outputs": [], @@ -177,6 +201,129 @@ "weightmap = xa.read_wm('wm')" ] }, + { + "cell_type": "markdown", + "id": "e297b4c4-22b9-427c-893e-f3ab708f853d", + "metadata": {}, + "source": [ + "### Verifying the weightmap" + ] + }, + { + "cell_type": "markdown", + "id": "a0ceaf52-bc04-4630-a017-8157b24ce9d0", + "metadata": {}, + "source": [ + "Let's verify if the aggregation was successful. The `weightmap` class can produce diagnostic figures that show a given polygon + the grid cells of the original raster dataset that overlap it. (This feature is still a bit experimental and finicky, and as of v0.3.2.0 needs a little bit of manual processing) " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d136f646-836b-4c0a-8d5c-e84e5e25a38b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "adjusting grid... (this may happen because only a subset of pixels were used for aggregation for efficiency - i.e. [subset_bbox=True] in xa.pixel_overlaps())\n", + "grid adjustment successful\n" + ] + } + ], + "source": [ + "# Load `subset_find()`, which allows you to find one grid within another\n", + "from xagg.auxfuncs import subset_find\n", + "\n", + "# weightmap.diag_fig() takes two required arguments: some information about\n", + "# a grid, and either the polygons of the raster grid, or the raster grid\n", + "# itself to calculate the polygons. \n", + "\n", + "# Let's get the raster grid.\n", + "# To match the internal indexing of `weightmap`, we need to subset the `ds`\n", + "# TODO: move this step internally to `weightmap.diag_fig()`\n", + "grid_polygon_info = subset_find(ds,weightmap.source_grid)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9320f9f4-ff72-48cc-b2d2-32d4656a7e42", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGuCAYAAACHnpy7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADP30lEQVR4nOydd3wUVdfHf1O2b3pCQghJqIbeu4hIEVFUsKBiAUVFUcAHG6+PihW7iAqCj9hQwAaiooIKqAiKCaEGCJCQQkJI3747M/f9Y7OTbLKQ7GzKJtwvn/2QnTlz587ZO3fOnHvvOQwhhIBCoVAoFAqlFcO2dAUoFAqFQqFQAoUaNBQKhUKhUFo91KChUCgUCoXS6qEGDYVCoVAolFYPNWgoFAqFQqG0eqhBQ6FQKBQKpdVDDRoKhUKhUCitHmrQUCgUCoVCafVQg4ZCoVAoFEqrp9UZNB999BEYhpE/PM8jISEBs2bNQn5+vt/lXXrppbj00ksbv6JVTJ06FTfffDMAgBCCiIgIfPTRR3XkkpOTva7L85kzZ04dWbPZjAULFiA+Ph5arRb9+/fHunXrAqqny+XCypUrMWTIEERGRkKv1yMpKQnXXHMNNmzYEFDZSlm8eDEYhmmRc/uD57eaOXOmz/3PPvusLJOdnd1k9bBarVi8eDG2b9/eZOdoatLT03HllVciMTEROp0OkZGRGDFiBNasWeNTPi0tDePHj4fRaER4eDimTZuGkydPBlyPt99+GykpKdBoNOjUqROeeeYZuFyuOnLbtm3DhAkT0K5dOxiNRvTt2xfLli2DKIpeck6nE0899RQ6deoEtVqNpKQkLFq0CDabTXEdc3NzMXXqVHTu3BkGgwFhYWEYMGAA3nnnHQiCUEf+5MmTmDZtGsLDw2E0GjFhwgSkpaX5LHvdunXo378/tFot4uPjsWDBApjN5jpye/fuxbXXXov4+Hjo9XqkpKTg2WefhdVq9ZIjhGDZsmWyTtu3b4/77rsPZWVliq+fQqkDaWV8+OGHBAD58MMPya5du8hvv/1GFi9eTDQaDenUqRMxm81+lTdmzBgyZsyYpqksIaRDhw7kzTffJIQQcvjwYQKAHDp0qI5cUlISGTVqFNm1a5fX5+TJk3VkJ0yYQMLDw8l7771HfvvtNzJ79mwCgHz22WeK6zl9+nSiUqnII488Qn744Qfyyy+/kFWrVpFp06aRe++9V3G5gfD000+T1tBEAZCQkBCi1+tJZWWl1z5JkkinTp1IaGgoAUCysrKarB5nz54lAMjTTz/dZOdoarZt20buvfde8umnn5LffvuNfPfdd+Smm24iAMhzzz3nJZuRkUFCQkLI6NGjyQ8//EC+/vpr0qtXLxIfH0+KiooU1+H5558nDMOQRYsWkW3btpFXXnmFqNVqcvfdd3vJbd26lbAsSy699FKyceNGsnXrVvLggw8SAGTevHlestOmTSNarZa8+OKLZOvWreTZZ58larWaTJkyRXE9MzIyyO23305Wr15NfvnlF7J582bywAMPEADkrrvu8pItKioi8fHxpFevXuTrr78mP/zwA7n44otJSEgIOXLkiJfsmjVrCAAye/Zs8ttvv5H33nuPhIWFkQkTJnjJHTp0iGi1WtKvXz+yfv168uuvv5Knn36acBxHrr76ai/Z//znP4RlWfLoo4+SLVu2kKVLl5LQ0FAyaNAg4nQ6FeuAQqlJ8D8tauExaPbs2eO1/cknnyQAyJo1a/wqrykNmoKCAgKA/PXXX4QQQlavXk1CQkKIKIp1ZJOSksiVV15Zb5k//PADAUA+//xzr+0TJkwg8fHxRBAEv+t58uRJAoA89dRTPvf7qm9z0NgGjcViabSyagKA3HrrrUSn05FVq1Z57fvll18IAHL33XdTgyYAhg0bRjp27Oi17YYbbiDR0dGkoqJC3padnU1UKhV59NFHFZ2nuLiYaLVacs8993htf+GFFwjDMF4vIzNmzCAajabOS9TEiRNJaGio/H3Xrl0EAHn99de95F588UUCgGzZskVRXc/FjTfeSHieJ3a7Xd72yCOPEJVKRbKzs+VtFRUVJDo6mtx4443yNkEQSPv27cnEiRO9yvzss88IALJ582Z52xNPPEEAkOPHj3vJ3nPPPQQAKS0tJYQQkpeXRziOIw8++KCX3Oeff04A1LlnKBSltLohp3MxfPhwAMCpU6cAAHa7HYsWLZJdvB06dMDcuXNRXl5+zjIIIejWrRsuv/zyOvvMZjPCwsIwd+7cBtfpn3/+gUqlwoABAwAAf//9NwYPHgyWVa72DRs2wGg04oYbbvDaPmvWLJw+fRp///2332WWlJQAANq3b+9zf8362u12LFy4EP3790dYWJg8JPDtt9/WOY5hGDzwwAP49NNP0aNHD+j1evTr1w/ff/99HdkffvgB/fv3l138r732ms+6EEKwfPly9O/fHzqdDhEREbj++uvrDDNceuml6N27N37//XeMHDkSer0ed955JwDgt99+w6WXXoqoqCjodDokJibiuuuuq+Mm94ewsDBMnToVq1ev9tq+evVqjBo1Ct27d/d53OrVq9GvXz9otVpERkZi6tSpyMjI8JKZOXMmjEYjjh8/jsmTJ8NoNKJjx45YuHAhHA4HACA7OxsxMTEAgGeeeabOMNjx48cxa9YsdOvWDXq9Hh06dMCUKVNw4MABr3Nt374dDMNg7dq1eOKJJxAfH4/Q0FCMHz8eR48e9ZLdunUrrrnmGiQkJECr1aJr16649957UVxcrFiP5yI6Oho8z8vfBUHA999/j+uuuw6hoaHy9qSkJIwdO1bxMOlPP/0Eu92OWbNmeW2fNWsWCCHYuHGjvE2lUkGtVkOn03nJhoeHQ6vVyt937twJAJg8ebKX3FVXXQUA+PrrrxXV9VzExMSAZVlwHCdv27BhAy677DIkJSXJ20JDQzFt2jR899138hDV7t27UVBQUOf6b7jhBhiNRi+9qlQqAO62X5Pw8HCwLAu1Wi2XKYpis10/5QKmhQ0qvzmXh+att96SrX1Jksjll19OeJ4nTz75JNmyZQt57bXXiMFgIAMGDPB6c6ntoXnrrbcIwzDk2LFjXuW/++675xwu8lW/hnxqvq0nJSWRkJAQYjQaCc/zpEePHuS1116r43EZPnw4GTJkSJ3zHjx4kAAgK1eurFOXDz/88Lx1NpvNJDw8nMTFxZGVK1ee14tQXl5OZs6cKQ8J/PTTT+Thhx8mLMuSjz/+2EsWAElOTiZDhw4lX3zxBdm8eTO59NJLCc/z5MSJE7LcL7/8QjiOIxdffDH55ptvyJdffkmGDBlCEhMT63ho7r77bqJSqcjChQvJTz/9RD7//HOSkpJCYmNjSWFhoSw3ZswYEhkZSTp27Ejefvttsm3bNrJjxw6SlZVFtFotmTBhAtm4cSPZvn07+eyzz8htt91GysrK5OPvuOOOBntUAJC5c+eSX3/9lQAghw8fJoQQUlZWRrRaLVm9ejV59dVX65TneUO/+eabyQ8//EA++eQT0rlzZxIWFubV/u644w6iVqvlNvHLL7+Qp556ijAMQ5555hlCCCF2u5389NNP8nCDZ8jS8/a8Y8cOsnDhQvLVV1+RHTt2kA0bNpBrr72W6HQ6ryGHbdu2yb/bjBkzyA8//EDWrl1LEhMTSbdu3bza44oVK8iSJUvIpk2byI4dO8jHH39M+vXrRy666KI6wwgA/PKEiqJIXC4XKSoqIu+++y7heZ6899578v4jR44QAOTdd9+tc+zDDz9MGIYhNptN3jZmzJgGefsef/xxAsDn0HV0dDS5+eab5e+7d+8mGo2GzJ07l+Tn55OysjLyySefEJVKRV577TVZzvM71x4+Pnr0KAFARowY4bU9KSmJJCUl1VtXD5IkEZfLRUpLS8m6deuIwWAgixYtkvdbrVbCMAx55JFH6hz7zjvvEADk6NGjhBBC3nvvvXP2c4MHD/aqa1ZWFgkPDyfXX389OXHiBKmsrCTfffcdCQsL8/LGeDwxv/32m1d5NpuNMAxD2rdv3+BrpVDOR6s1aHbv3k1cLhcxmUzk+++/JzExMSQkJIQUFhbKHfsrr7zidez69evruDhrGzSVlZUkJCSEzJ8/3+vYnj17krFjx9Zbv5KSErJ3716yd+9e0rlzZ3LfffeRvXv3ynX69NNP5f0Oh0M+7v777yerV68mO3bsIBs3biQzZsyQhzJq0q1bN3L55ZfXOe/p06cJAPLiiy/K2z7++GPCcVwdQ8MXP/zwA4mOjpaNraioKHLDDTeQTZs2nfc4QRCIy+Uid911FxkwYIDXPgAkNjbWa15JYWEhYVmWLFmyRN42bNgwEh8f7/UAqqysJJGRkV4PoXO57nNzc4lOp/MaZvA8wH799Vcv2a+++ooAIOnp6ee9rjvvvJNwHOfloj8XHoPGM1/m4YcfJoS4jWCj0UhMJlMdg6asrIzodDoyefJkr7JycnKIRqMht9xyi7zNY1x98cUXXrKTJ08mF110kfzdnyEnQRCI0+kk3bp1Iw899JC83WPQ1K7XF198QQCQXbt2+SzP81A9deoUAUC+/fZbr/0cx5HLLrus3np5uPfee+W2qFaryfLly73279y5kwAga9eurXOsx4A4ffq0vO2yyy4jHMfVe967776baDQan/u6d+9eZyhm586dJD4+Xq4rx3F1+p2NGzfK935NPvjgAwKAdO/e3Wt7ly5dSJcuXeqtq4clS5bI52cYhjzxxBNe+/Pz8wkAr3vOg8fY8AyLv/DCCwQAKSgoqCM7ceLEOnXNyMggKSkpXi9q8+bNI5IkyTLp6ek+50B5XgDUanWDr5VCOR+t1qCp/enTpw/5888/CSGEPProowRAnYmBkiQRg8FApk+fLm/zNYdm3rx5JCwsTH5L89x4X3/9dYPrWVpaSliWJVu3biWEuB8IWq3WyztUH54JfmlpafK2bt26kUmTJtWR9Rg0vjqthmK1WsmGDRvIww8/TC655BKiUqnkh3VNvvjiCzJy5EhiMBi8fgOtVuslB4DcdNNNdc4TFxdH5syZQwhxe4dYliUPPPBAHTnPg9zDE088QRiGIWfOnCEul8vrM3z4cDJ06FBZdsyYMSQiIqJOmcePHydqtZoMHTqUfPTRR16eIqXU1NEzzzxDYmNjicvlIgMHDiR33nknIYTUMWg2b97s00ghhJArrriCxMbGeumhtseBELc3oabOz2fQuFwu8sILL5AePXrIv6vnU7M9eQyamt4QQqo9IuvWrZO3nTlzhtx7770kISGBsCzrVeZLL73UQO355tSpU2TPnj3khx9+IHPmzCEsy5JXX31V3u8xaGrWx4PHoPH1UK6Pu+++u0479tC9e3evl4l///2XtGvXjkyZMoV899135LfffiP//e9/iVqtJs8++6ws53A4SNeuXUl8fDzZsmULKSsrIz/++COJjY0lHMeRlJQUv+tZk4KCArJnzx7y888/k8cee4yo1Wqv+8lj0Pj6TTwGjcdQ9Rg0Nb2dHiZOnOhlQGdlZZGuXbuSUaNGyZ6/V155hYSGhsrt3sMll1xCQkNDyRdffEHKysrIzp07Sbdu3QjHcefUN4XiL9WD0q2MTz75BD169ADP84iNjfWa/1FSUgKe5+U5BR4YhkFcXJw8Z+RcPPjgg3jnnXfw2Wef4Z577sE777yDhIQEXHPNNec9jhAiL9fcsWMHWJbFkCFDIAgCfv/9dwwZMgQcx0EQBHAcV++S5FtvvRXvvPMOdu/eLc/DiYqK8ln/0tJSAEBkZOR5yzwfOp0O1157La699loAQE5ODq644gq8++67uO+++9CrVy988803uPHGG3HDDTfgkUceQVxcHHiex4oVK+rMH/HUtzYajUZerlpWVgZJkhAXF1dHrva2M2fOgBCC2NhYn/Xv3Lmz13dfc4K6dOmCX375Ba+88grmzp0Li8WCzp07Y968eZg/f75vxfjBrFmz8Mwzz+DFF19EWloa3n77bZ9y55u3FB8fj61bt3pt0+v1XvMyALce7XZ7g+r1n//8B++++y4ee+wxjBkzBhEREWBZFrNnz/a5dLj276bRaABAlpUkCRMnTsTp06fx5JNPok+fPjAYDJAkCcOHDw9oOTIAJCYmIjExEUD13JNFixbhjjvuQExMjFy/c90LDMMgPDzc7/NGRUXBbrfDarVCr9fXKXfQoEHy97lz5yI2NhYbNmyQ56uMHTsWLMti8eLFmDFjBjp37gy1Wo0ff/wRt912GyZOnAgAMBgMePHFF/Hcc8+hQ4cOftezJnFxcfK9MnHiRERERODxxx/HnXfeiQEDBiAiIgIMwzSo36ip19r3WWlpqVf/8vjjj6OyshLp6ekwGAwAgEsuuQTR0dG48847cfvtt2PMmDEAgC+//BIzZ87EjTfeCABQq9V46KGH8Msvv5x3XiOF4g+t1qDp0aMHBg8e7HNfVFQUBEHA2bNnvYwaQggKCwsxZMiQ85bdtWtX+UF+xRVXYNOmTXjmmWe8Jtn5YseOHRg7dqzXttqdqmci3bZt2+qNf0MIAeA9KbdPnz5Yu3YtBEHwmiTpmdzZu3fv85bpD4mJibjnnnuwYMECHDp0CL169cKaNWvQqVMnrF+/3ssg80xO9RdPZ1tYWFhnX+1t0dHRYBgGf/zxh/yArUntbecyGEePHo3Ro0dDFEX8+++/ePvtt7FgwQLExsbipptuUnQdHjp27Ijx48fjmWeewUUXXYSRI0f6lPM8OAoKCursO336NKKjowOqR23WrFmD22+/HS+++KLX9uLiYkUP/oMHD2Lfvn346KOPcMcdd8jbjx8/HmhVfTJ06FC89957OHnyJGJiYtClSxfodLo6k5oB973QtWvXOgZgQ+jTp49cxrBhw+TthYWFKC4u9rq/0tPTcfPNN9fpF4YMGQJJkpCRkSEb2V27dsWuXbuQn5+P0tJSdOnSBRUVFZg/fz4uueQSv+t5PoYOHQoAOHbsGAYMGACdToeuXbueU1c6nU6uZ83r79mzpywnCAKOHDkix9TyXH/Pnj1lY6bm9QPuNuIxaNq1a4fNmzejqKgIhYWFSEpKgk6nw/Lly3H99dc34tVTLmTazCqnmowbNw4A6gTj+vrrr2GxWOT952P+/PnYv38/7rjjDnAch7vvvrveYwYNGoQ9e/Zgz549SE5Oxty5c7Fnzx589913cn08+2u+6Z2LTz75BED1Ci7AHajPbDbXWRnw8ccfIz4+3qsTbigmk8ln0CwA8oqb+Ph4AG4jQa1WexkLhYWFPlc5NQSDwYChQ4fim2++8fI2mEwmWW8errrqKhBCkJ+fj8GDB9f5eDrjhsJxHIYNG4Z3330XAM4ZZMxfFi5ciClTpuDJJ588p8yIESOg0+nqtNG8vDz89ttvDWqjtantRakJwzB1DL4ffvhBUTBKT3k1z+lh5cqVisqrj23btoFlWfnBy/M8pkyZgm+++QYmk0mWy8nJwbZt2zBt2jRF55k0aRK0Wm2d4JeegJ4e7yXgvif+/fffOkH0du3aBQBISEioU36HDh3Qp08f6PV6vPrqqzAYDLjrrrsU1fVcbNu2DYDbiPIwdepU/Pbbb8jNzZW3mUwmfPPNN7j66qvll6Nhw4ahffv2da7/q6++gtls9tJrfHw8Dh06VKfvON/1t2vXDn379kVYWBjee+89WCwWPPDAA4FdMIXioUUHvBRwrlVONfGsclKpVGTx4sVk69at5PXXXydGo7HeVU416dmzp8+JufXhmRj577//EkIIef/990m7du3OGc/ls88+I9dddx1ZvXo1+fXXX8nXX38tBxObOXNmHfkJEyaQiIgIsmrVKvLbb7/JMU5qx+Bp6KTgPXv2kMjISHL//feT9evXk99//518++23cjyJSy+9VK776tWrCQBy3333kV9//ZV89NFHpEuXLqRbt251VpHAx/wbQtyrOO644w75+5YtWwjLsuTiiy8mGzZsIF999RUZMmQI6dixY50y77nnHqLX68kjjzwiz1v47LPPyH333ec1cXTMmDGkV69edc69YsUKcsMNN5CPPvqI/Pbbb2Tz5s3k+uuvJwDIzz//LMspWeV0Ps63yum2224jmzdvJp9++inp2rWrz1VOBoOhTpm+4vQkJSWRiy66iPz8889kz5498vluv/12otFoyJtvvkl+/fVX8sorr5CYmBiSkJDg1f49c2i+/PJLr3KzsrK8Vsw5nU7SpUsXkpSURD7//HPy008/kblz55Lu3bv7nMeDBq5yuvvuu8nChQvJ+vXryfbt28lXX31Fpk+fTgDUWaWTkZFBjEYjueSSS8jmzZvJN998Q3r37u0zsF5DVzkRUh1Y7//+7//I9u3byauvvko0Gk2dwHrLli0jAMgVV1xBNm7cSLZs2UIee+wxwvM8GT9+vJfsyy+/TD7++GOybds2sm7dOjJt2jTCsqzPYJgNXeX01FNPkXvvvZd89tlnZPv27WTjxo1kzpw5hOM4csMNN3jJFhUVkfbt25M+ffqQDRs2kM2bN5NLLrmEhISEkIyMDC/ZTz/9lAAg99xzD9m2bRtZtWoVCQ8PrxNY79tvvyUMw5Dhw4fLgfVeeOEFYjQaSc+ePb0WPaxatYqsWrVK7t9mz55NGIYJaM4fhVKbNmnQEOJeEvjYY4+RpKQkolKpSPv27cl9993ntTSXkPMbNIsXL5ZXVPnDsmXLSHx8vDzT/+qrryazZs06p/yuXbvIuHHjSFxcHFGpVESv15MhQ4aQ5cuX+zSCTCYTmTdvHomLiyNqtZr07dvX52qPhi7bLisrI88//zy57LLLSIcOHYharSYGg4H079+fPP/888RqtXrJv/TSSyQ5OZloNBrSo0cP8v777/t8uDbUoCGEkE2bNpG+ffsStVpNEhMTyUsvvXTOwHqrV68mw4YNIwaDgeh0OtKlSxdy++23ywYkIec2aHbt2kWmTp1KkpKSiEajIVFRUWTMmDF1VnNdd911RKfT1WkvvlBq0BBCyP/+9z/5usPCwsg111xTZ8msPwbNL7/8QgYMGEA0Gg0BIOu5rKyM3HXXXaRdu3ZEr9eTiy++mPzxxx912n9DDRpC3JGvJ0yYQEJCQkhERAS54YYbSE5OTh2DxmQynXOCeG1Wr15NRo8eTaKjownP8yQ8PJyMGTOmzgohD//++y8ZN24c0ev1JDQ0lFx77bV1Ar0RQsigQYNIXFxcvef38NZbb5Hu3bvL7fHpp5/2GdH266+/JhdffDGJjo4mBoOB9OrVizz33HN1ln0/88wzpEuXLkSj0ZDw8HAyadIk8vvvv/s8d3R0NBk+fHi9ddy0aRMZP348iY2NJTzPE6PRSIYOHUqWLVtGXC5XHfnjx4+Ta6+9loSGhhK9Xk/GjRtHUlNTfZb9+eefy+0yLi6OzJs3j5hMpjpyv/32G5k4cSKJi4sjOp2OdO/enSxcuJAUFxd7ya1cuZL06NGD6PV6YjQayejRo8nGjRvrvUYKxR8YQqomalDqMHjwYDAMgz179rR0VSjNTFxcHG677Ta8+uqrLV2VVs/mzZtx1VVXYd++fX4PCzYGJpMJkZGRWLp0qV+BMVuCw4cPo1evXvj+++9x5ZVXtnR1KJRWRaudFNxUVFZW4uDBg/j++++RmpraYokZKS3HoUOHYLVa8dhjj7V0VdoE27Ztw0033dQixgwA/P777+jQoUOD5sG1NNu2bcOIESOoMUOhKIB6aGqxfft2jB07FlFRUXjggQewePHilq4ShUKhUCiUeqAGDYVCoVAolFZPm1y2TaFQKBQK5cKCGjQUCoVCoVBaPXRSMAC73Q6n09nS1aBQKJSgRq1WK4rATKE0Bxe8QWO329GpUyefofcpFAqFUk1cXByysrKoUUMJSi54g8bpdKKwsBC5ubkIDQ0FAJjNZuzfvx99+/aF0Whs4Rq2Pqj+AofqMDCo/gLDl/4qKyvRsWNHOJ1OatBQgpILfpVTZWUlwsLCUFFRIRs0TqcTZ86cQWxsLNRqdQvXsPVB9Rc4VIeBQfUXGL7056uvpFCCCWrQ0JuUQqFQ6oX2lZRgh65y8oEgCCgrK4MgCC1dlVYJ1V/gUB0GBtVfYFD9UVoj1KDxgc1mw759+2Cz2Vq6Kq0Sqr/AoToMDKq/wKD6o7RG6JCTDzeqJElwOp1Qq9VgWWrz+QvVX+BQHQYG1V9g+NIfHXKiBDsX/ConX7AsS2fxBwDVX+BQHQYG1V9gUP1RWiP01cUHdrsdx44dg91ub+mqtEqo/gKH6jAwqP4Cg+qP0hqhBo0PRFFEZWUlRFFs6aq0Sqj+AofqMDCo/gKD6o/SGqFzaOi4MIVCodQL7SspwQ710FAoFAqFcgHz+++/Y8qUKYiPjwfDMNi4cWO9x+zYsQODBg2CVqtF586d8d577zV9ReuBGjQ+MJvN+Ouvv2A2m1u6Kq0Sqr/AoToMDKq/wKD6u7CwWCzo168f3nnnnQbJZ2VlYfLkyRg9ejT27t2L//u//8O8efPw9ddfN3FNz0+zGzRLliwBwzBYsGCBvO3MmTOYOXMm4uPjodfrMWnSJGRmZnodd/ToUYwaNQoJCQl49tlnvfYlJyeDYRjs3r3ba/uCBQtw6aWX+l1HlUqFDh06QKVS+X0sheqvMaA6DAyqv8Cg+ruwuOKKK/D8889j2rRpDZJ/7733kJiYiKVLl6JHjx6YPXs27rzzTrz22mtNXNPz06zLtvfs2YNVq1ahb9++8jZCCK699lqoVCp8++23CA0NxRtvvIHx48fj8OHDMBgMAIC5c+fitttuw5AhQzBnzhyMGzcOo0aNksvRarV47LHHsGPHjoDrqdFokJSUFHA5FypUf4FDdRgYVH+BQfXX8tjtdjidTsXHE0LAMIzXNo1GA41GE2jVsGvXLkycONFr2+WXX44PPvgALperxQzhZvPQmM1mzJgxA++//z4iIiLk7ZmZmdi9ezdWrFiBIUOG4KKLLsLy5cthNpuxdu1aWa68vBwDBgxA3759ER8fj4qKCq/y7733XuzevRubN28OuK6iKKKiooLO8FcI1V/gUB0GBtVfYFD9tSx2ux06nQ5hYWGKPwkJCXW2LVmypFHqV1hYiNjYWK9tsbGxEAQBxcXFjXIOJTSbQTN37lxceeWVGD9+vNd2h8MBAF5BnDiOg1qtxp9//ilve/bZZzFhwgTo9XqwLIvLL7/cq5zk5GTMmTMHixYtgiRJAdXVarVi7969sFqtAZVzoUL1FzhUh4FB9RcYVH8tS7Vnhlf8MZvNyM3NRUVFhfxZtGhRo9WxtvfHs2C69vbmpFmGnNatW4e0tDTs2bOnzr6UlBQkJSVh0aJFWLlyJQwGA9544w0UFhaioKBAlps8eTLOnj2LyspKxMTE+DzPf//7X3z44Yf47LPPcNttt/lVR7PZLC9FJISgb9++0Ov1kCQJFosFOp0OPM/D6XTC6XTCaDQCACxHvgDLMtCqOUgSgcUuQKfhwHMsnC4JDpeIEL3b/Wa1C2AYBjoNB0IIzDYBWjUHFc/CJUiwO0UYdTwYhoHN4U4Kp9PwDZAVQQiBXuv+OU1WFzQqDmoVC0GUYHOIMGh5sCwDu1OEJFXLmm0uqHkWahXnU1aUCAw1ZFU8C42KgyhKsDpE6LU8OJaBwylCEAkMOh46iaBnmANsfhGIlocoEVjtAvQaDhzHwuES4RIkGHVuvVjsArhz6lCEs4as1S7Uq+/QntPdslarW986nVuHZjO0Wi1UKhVcLhfsdjuMRqNbh1U5a3Q6nVuHJtN5ZQkh0Ov1cttRq9VQq9UQBAE2mw0GgwEsy8Jut0OSJJ+yoijCarXKsg6HA4IgwGAwQK/Xo2fPnuA4DgBkWb1eD47jvGQB96Q+nueh0WjkNuuRrd1mrVarHAm2vvbdEB2GhIQAgJcOG6Lvmjo0mUzQaDR+69CXrCiK0Ov1GDJkCARBgMPhgEaj8UuHvmRdLlf1fW+xgOO4BuvwfPp2OByyDpW22cbWNwAMGTIEWq1W1jelJWAUGQge4yI0NLRJltjHxcWhsLDQa1tRURF4nkdUVFSjn6+hNLmHJjc3F/Pnz8eaNWt8htJWqVT4+uuvcezYMURGRkKv12P79u244oor5M7cg0ajOacxAwAxMTF4+OGH8dRTT/k99nj48GH576NHj6KkpETuyFJTU+XZ/oWFhUhPT5dlj+RU4lShBQDgEiWkHitFhdkFADhbbsfezFJZNjPfhKwCdzmiRJB6rBRlJnc9SyodSD1WLXsi34wT+dUrDFKPlaKk0u3NKjM5kXqsFKLkbrRZBWZk5ptk2b2ZpThb7u6UKswupB4rhUt0e61OFVpwJKdSlt13vByFZW5Zs01A6rFSOFxuN3NukRUZ2dVDewdOlqOgxN2JWuwiUo+VyoZXfrENB7PLAQAcyyCr0CzL2h1uWbPdLVtYYsf+E+XVOjxVgZwitw6dgluHJqtb9kyZHenHy6p/m9xKZBe69SKIbh2WV+m7uMKOtJr6zszEyZMnAbhz06SmpqK01L2/tLQUqamp8o1/4sQJr4noqampsuu0vLwcqampcubh7OxsHDt2TJZNS0tDUVERAHesjtTUVLhc7jqdOnUKGRkZ1fret0821M1mM1JTU+UHSG5uLg4dOuTWIcfh5MmTOHPmDAD3gy41NVV+Yz59+jQOHDggl3vo0CHk5ua69W23e7XZgoIC7Nu3T5bNyMjAqVOnAAAulwupqamorHS3iaKiIqSlpcmyx44dQ3Z2tlvfgoDU1FSUl7t/u+LiYqSmpnrp+8SJEwDcHaovfXu8pydPnvTSd1pa2nn1ffToUVl27969sl5MJhNSU1Pl+z0nJwcZGRngOA4GgwGHDh2SO97a+s7Ly8PBgwflcg8ePIj8/HwAbuMsNTUVFotF1mFNfR8+fFjWd719xJEjdfTtGTI/e/asl74zMzORlZUFwG3EpqamoqzM3f5LSkq89H38+HEcP35c/p6amoqSkhIAQFlZGVJTU+Uho6ysrDr6Pnv2LACgoqKiTpvNzMyEwWAAx3FIT0+v8/CiXNiMGDECW7du9dq2ZcsWDB48uEUnkjd5YL2NGzdi6tSpXsaJKIpgGEZ+K/Xsq6iogNPpRExMDIYNG4bBgwfj3XffrfccycnJWLBgARYsWACz2YyuXbvi8ccfR3Z2NtLT07F9+/ZzHusJFpWfn4/4+HgA7s6gsLAQnTt3hkqloh4aPz00DqeI4/kmdGynR6hBTT00Cjw0DocDx48fR8eOHREaGko9NH56aHieR15eHiIiImAwGKiHxk9922w2lJaWIiEhAS6XC2q1Gna7nQbWayY8zyVAE4CHxtHg38psNsvG8YABA/DGG29g7NixiIyMRGJiIhYtWoT8/Hx88sknANwGcu/evXHvvffi7rvvxq5duzBnzhysXbsW1113nd/1bSya3KAxmUzy24mHWbNmISUlBY899hh69+5d55jMzEykpKTgxx9/rDOT2hc1DRoAePfdd7F48WJMmTIFJ0+ebJBBU/OHt1gsOHjwIHr37i13dueCZH9Tb/0uNCw2AYeyy9ErORwGXfPnP2WSG7b0MJjxpw1S6kL1Fxi+9EcjBTcfHl0z0Co2aAjsDf6ttm/fjrFjx9bZfscdd+Cjjz7CzJkzkZ2d7fUs3bFjBx566CEcOnQI8fHxeOyxxzBnzhy/69qYtEjqg0svvRT9+/fH0qVLAQBffvklYmJikJiYiAMHDmD+/PkYNGhQg4P01DZoXC4XevTogfz8fAwbNsxvg8YfqEETfLQFg4ZCCTaoQdN8yAYNo1du0BDrBfdbBUWk4IKCAtx2221ISUnBvHnzcNttt3kt2fYXlUqF5557jmaKpVAoFArlAoEmp6RDTo2OxSbgYHY5etMhJ8XQIZPAoPoLDDrk1LJUe2iMAXhozBfcb9X8T5tWAM/ziImJAc9T9SiB5xjEhGnBcy0Xj6C1Q9tgYFD9BQbVX3DAMKzCuC4EweqqOHr0KNauXYs//vgD2dnZsFqtiImJwYABA3D55ZfjuuuuUxzNmHpo6ByaNkdb8NBQKMEG9dA0Hx5ds2yEYg+NJJUF1W+1d+9ePProo/jjjz8wcuRIDB06FB06dIBOp0NpaSkOHjyIP/74A5WVlXj00UexYMECvw0ban77QBRF2Gw26HS6OrFwKPUjSgQ2hwCdxr2km+I/tA0GBtVfYFD9URqba6+9Fo888gjWr1+PyMjIc8rt2rULb775Jl5//XX83//9n1/noAaNDzxBzAYNGiTHh6A0HKvdHaBvUPdIOQYPxT9oGwwMqr/AoPoLDhiGAcMoWbsTWPqfpiAzM7NBEadHjBiBESNGKErMSQ0aH+j1egwcOFAOQkXxD72Gw8BukdBr6JudUmgbDAyqv8Cg+gsOGLBggmMxcsD4mz5DSbqNtqGpRobjOISGhlJXq0I4jkWoQQWOo81LKbQNBgbVX2BQ/QUH7knByj7Bzq+//oqrrroKXbp0QdeuXXHVVVfhl19+CajM4L/qFsDhcCA7O1vOBE7xD4dLRHahWc4JRfEf2gYDg+ovMKj+KE3JO++8g0mTJiEkJATz58/HvHnzEBoaismTJ+Odd95RXC4dcvKBy+VCQUEBoqOjFS8fu5BxCRIKSmyIDtNAo6JveEqgbTAwqP4Cg+ovWGDRFv0OS5YswZtvvokHHnhA3jZv3jyMGjUKL7zwgtd2f6DLtumy7TYHXbZNoTQ+dNl28+HRtVoVr2j4iBAJTtfpoP2tQkJCsHfvXnTt2tVre2ZmJgYMGCBnrveXtmf6USgUCoXSBmirc2iuvvpqbNiwoc72b7/9FlOmTFFcLh1y8oHFYsHhw4fRs2dPGjZdARa7gIzsCvRIDoNBS5uYEmgbDAyqv8Cg+qM0JT169MALL7yA7du3Y8SIEQCA3bt3Y+fOnVi4cCGWLVsmy86bN6/B5dKnjQ84jkN4eDid4a8QjmUQZlTToHoBQNtgYFD9BQbVX3DQlpZt1+SDDz5AREQEDh8+jMOHD8vbw8PD8cEHH8jfGYahBk2gaLVadOvWraWr0WrRqjl0S6DBuAKBtsHAoPoLDKq/4KA1DB8pISsrq0nKbXuaagQkSYLNZoMkBV+0xdaAVJX6QJIu6PnmAUHbYGBQ/QUG1V9w0Fbn0DQV1EPjA4vFQsN+B4CFpj4IGNoGA4PqLzCo/oIDBozCIafgf5nMy8vDpk2bkJOTUyfNwRtvvKGoTGrQ+ECn06F///7Q6XQtXZVWiU7DoX/XCOho6gPF0DYYGFR/gUH1R2lKfv31V1x99dXo1KkTjh49it69eyM7OxuEEAwcOFBxuRemX6oeeJ5HeHg4eJ7ae0rgORbhRjV4mvpAMbQNBgbVX2BQ/QUHDMMp/gQzixYtwsKFC3Hw4EFotVp8/fXXyM3NxZgxY3DDDTcoLpc+cXzgdDp9usEoDcPpEpFTZIGTpj5QDG2DgUH1FxhUf8FBW51Dk5GRgTvuuAOA23i22WwwGo149tln8fLLLysuN7ivuoWgN3NgOAUJuWescAp0QqFSaBsMDKq/wKD6Cw7YAP4FMwaDQc4TFh8fjxMnTsj7iouLFZdL/Yk+MBqNuPjii1u6Gq0Wo06FUX1iWroarRraBgOD6i8wqP4oTcnw4cOxc+dO9OzZE1deeSUWLlyIAwcO4JtvvsHw4cMVl0sNGgqFQqFQghDlw0fBvcrpjTfekPM1LV68GGazGevXr0fXrl3x5ptvKi6XGjQ+sFqtOHLkCFJSUqDX61u6Oq0Oq13AkZxKpCSGQk9THyiCtsHAoPoLDKq/4KCtGjSdO3eW/9br9Vi+fHmjlEufNj5gWRYGgwEsG9zjkMEKyzIwaHmwNPWBYmgbDAyqv8Cg+gsWODDwf8VScJszTQc1aHyg1Wpx0UUXtXQ1Wi1aNYeLEoMvZX1rgrbBwKD6CwyqP0pjExERAYZp2EtuaWmponNQg8YHkiTB5XJBpVLRNxQFSBKBS5Sg4ljqpVEIbYOBQfUXGFR/wYHSIScmCH00S5cubfJzUIPGBzTsd2DQ1AeBQ9tgYFD9BQbVX3CgNPUBg+ALmeGJOyMIAj777DNcfvnliIuLa9RzUNPbBzqdDn369KFhvxWi03Do0ymcpj4IANoGA4PqLzCo/oKDthgpmOd53HfffXIcmsaEGjQ+4HkeUVFRNOy3QniORVSYhqY+CADaBgOD6i8wqP4oTcmwYcOwd+/eRi+XtlYfOJ1OnD17FjExMVCr1S1dnVaH0yXhbLkdMeFaqFXUqFECbYOBQfUXGFR/wYHyqL/B3e/ef//9WLhwIfLy8jBo0CAYDAav/X379lVULjVofOBwOHD8+HGEhobSm1kBDpeIE6dNCDWoqEGjENoGA4PqLzCo/oID5ZOCg7vfnT59OgBg3rx58jaGYUAIAcMwEEVleQAZQkjwTYduRiorKxEWFoaKigqEhvq/1Jhkf9MEtaIEApM8raWrQKG0OQLtKykNx6PruLBLwDL++x0kIqCw4veg/a1OnTp13v1JSUmKyqUeGgqFQqFQKM2GUoOlPoLbL9VCWK1W7Nu3D1artaWr0iqx2gXsO1EGq11o6aq0WmgbDAyqv8Cg+gsO2mq2bQD49NNPMWrUKMTHx8sem6VLl+Lbb79VXGbwX3ULwDAMVCpVg6MaUrxhGAYqjqX6CwDaBgOD6i8wqP6Cg7a4bBsAVqxYgf/85z+YPHkyysvL5Tkz4eHhAQXgowaND3Q6HXr27EljMChEp+HQMzmMxqEJANoGA4PqLzCo/oIDT2A9/z/BbYi+/fbbeP/99/HEE0+A46qfE4MHD8aBAwcUl0vn0PiAEAJRFMFxHH1DUQAhBKJEwLEM1Z9CaBsMDKq/wKD6Cw7a6rLtrKwsDBgwoM52jUYDi8WiuNzgvuoWwmw2488//4TZbG7pqrRKzDYBfx44C7ONzqFRCm2DgUH1FxhUf5SmpFOnTkhPT6+z/ccff0TPnj0Vl0s9ND7QarXo2bMntFptS1elVaJVc+iZFAatmg45KYW2wcCg+gsMqr/ggAEHBv73o8GYy6kmjzzyCObOnQu73Q5CCP755x+sXbsWS5Yswf/+9z/F5VKDxgcqlQrt2rVr6Wq0WlQ8i3YRtCMMBNoGA4PqLzCo/oIDz5wYJccFM7NmzYIgCHj00UdhtVpxyy23oEOHDnjrrbdw0003KS6XGjQ+cLlcKCkpQVRUFFQqmi3aX1yChJJKB6JCNVDxwX1jBSu0DQYG1V9gUP0FByzDgVW0Yim4PTQAcPfdd+Puu+9GcXExJElqFAOaPm18YLfbceTIEdjt9pauSqvE7hRxJKcSdqey8NUU2gYDheovMKj+KE3JM888gxMnTgAAoqOjG80bSFMf+AjnXVMl9c3wp6kP6uKP/pqCtpD6oKV12Nqh+gsMX/qjqQ+aD4+uO0dcC47x30MmEhdOlm0M2t+qb9++OHToEIYMGYJbb70V06dPR0xMTMDlUg+NDxiGkT8U/6H6Cxyqw8Cg+gsMqr/ggAWn+BPM7N+/H/v378dll12GN954Ax06dMDkyZPx+eefBxSdmho0PrDZbDhw4ABsNltLV6VVYnMIOHiyHDYHXbatFNoGA4PqLzCo/oIDlrCKP8FOr1698OKLL+LkyZPYtm0bOnXqhAULFiAuLk5xmcF/1RQKhUKhUNosBoMBOp0OarUaLpdLcTnUoPGBTqdDnz59aNhvheg0PHp3DodOQxfRKYW2wcCg+gsMqr/goK2mPgDc0YJfeOEF9OzZE4MHD0ZaWhoWL16MwsJCxWXSJ44P6ITCwKD6Cxyqw8Cg+gsMqr/gQOl8GBLkc2hGjBiBf/75B3369MGsWbPkODSBQj00PjCbzdixYwcN+60Qs03Ajn1FNPVBANA2GBhUf4FB9RccKPPOKAvG15yMHTsW+/fvR3p6Oh555JFGMWaAAA2aJUuWgGEYLFiwQN5mNpvxwAMPICEhATqdDj169MCKFSvOW85HH33kNave86kZA8FsNuOmm25C+/btcdNNN3klsJo5cyYYhsFLL73kVe7GjRsVvV1otVqkpKTQsN8K0ao5pCSG0tQHAUDbYGBQ/QUG1R+lKXnxxRfRq1cvAG5vYGNFj1Fs0OzZswerVq1C3759vbY/9NBD+Omnn7BmzRpkZGTgoYcewoMPPohvv/32vOWFhoaioKDA61PzZlq6dCmMRiO2bNkCvV6PpUuXeh2v1Wrx8ssvo6ysTOklyahUKsTFxdEImQpR8SziInU0SnAA0DYYGFR/gUH1FxywAfwLdj755BN5npZOp0Pfvn3x6aefBlSmoqs2m82YMWMG3n//fURERHjt27VrF+644w5ceumlSE5Oxj333IN+/frh33//PW+ZDMMgLi7O61OT8vJydO/eHX369EFKSgoqKiq89o8fPx5xcXFYsmSJkkvywuVyoaioKKDZ1hcyLkFCUZkdLiH4w28HK7QNBgbVX2BQ/QUHbdWgeeONN3Dfffdh8uTJ+OKLL7B+/XpMmjQJc+bMwZtvvqm4XEVXPXfuXFx55ZUYP358nX0XX3wxNm3ahPz8fBBCsG3bNhw7dgyXX375ecs0m81ISkpCQkICrrrqKuzdu9dr/wMPPICVK1dCpVLhww8/xPz58732cxyHF198EW+//Tby8vKUXJaM3W7H4cOHadhvhdidIg6fqqCpDwKAtsHAoPoLDKq/4KCtxqF5++23sWLFCrz88su4+uqrcc011+CVV17B8uXLsWzZMsXl+n3V69atQ1pa2jk9IcuWLUPPnj2RkJAAtVqNSZMmYfny5bj44ovPWWZKSgo++ugjbNq0CWvXroVWq8WoUaOQmZkpyyQnJyMzMxO5ubk4fPiwz0lEU6dORf/+/fH000/7e1lek98YhsHgwYNhNBohSRJMJhMEwT3B1el0esla7YL84JYkApPVBUF0eyacLgkmq8tL1uZwyxLilvV4MVyCW9YzlmhzCHJguvplRVjt1RNwTVYXnC63rCC6ZSXJLWt3esuabS44XeI5ZS21ZB1VsmKVrFgl63CKsFRNAjbqeAzoFgEV556/JFbpRazSi8Mlwmyr1ovlvDr0lvVL31arHBiMEAKTySS/cbpcLphMpmod2mxeQcTqk60ZzdJsNsPpdLp1KAgwmUyQJHed7Hb7OWVFUfSSdTgc8twwo9GIAQMGyC5/j6woinVkAcBiscDhcFTpRfKSrdNmrVb5QVVv+26ADj3U1GFD9F1TLyaTSZEOfclaLBYYjUa5z/HoxR8d+pKtqReLxeKXDs8nW1OHSttsY+ubZVlcfPHFMBqNXvqmUBqDgoICjBw5ss72kSNHoqCgQHG5fhk0ubm5mD9/PtasWXPOyWLLli3D7t27sWnTJqSmpuL111/H/fffj19++eWc5Q4fPhy33nor+vXrh9GjR+OLL75A9+7d8fbbb3tXlmURFxd33om+L7/8Mj7++GMcPnzYn0vzks/IyEBBQQEYhoHD4UBqaqrcQRUWFiI9PV2WPZJTiVOF7k7RJUpIPVaKCrO7UzlbbsfezFJZNjPfhKwCdzmiRJB6rBRlJndHUVLpQOqxatkT+WacyK/uFFOPlaKk0t3ZlpmcSD1WKhsTWQVmZOZXd4p7M0txttzdgVaYXUg9VgpX1UP/VKEFR3IqZdl9x8tRWOaWNdsEpB4rlY2W3CIrMrKrh/YOnCxHQYm7A7XYRaQeK5WNrvxiGw5mlwNwG4RHcyqRX+yWtTvcsuYq46iwxI79J8qrdXiqAjlFbh06BbcOTVa37JkyO9KPV8+LOppbiexCt14E0a3D8ip9F1fYkVZT35mZOHnyJAD3gyQ1NRWlpe79paWlSE1NlTv8EydOeBnQqampKC4uBuAe7kxNTZUfQtnZ2Th27Jgsm5aWhqKiIgDuHCypqanyg+XUqVPIyMio1ve+ffINazabkZqaKj/scnNzcejQIVmHnnYIuB90qamp8kPp9OnTOHDggFzuoUOHkJub69a33e7VZgsKCrBv3z5ZNiMjA6dOnQLgfvClpqaistLdJoqKipCWlibLHjt2DNnZ2W59CwJSU1NRXu7+7YqLi5Gamuqlb0/COUKIT317HponT5700ndaWtp59X306FFZdu/evThz5gwA94M5NTVVfuDm5OQgIyMDDMOA53kcOHBAjmtRW995eXk4ePCgXO7BgweRn58PwG0ApKamygZPQUGBl74PHz4s67vePuLIkTr69gyZnz171kvfmZmZyMrKAuA2qlJTU+V5gSUlJV76Pn78OI4fPy5/T01NRUlJCQCgrKwMqampskGWlZVVR99nz54FAFRUVNRps0ePHgXP82AYBunp6QHFBqEop62ucuratSu++OKLOtvXr1+Pbt26KS7Xr+SUGzduxNSpU8Fx1atXRFEEwzBgWRYVFRWIiIjAhg0bcOWVV8oys2fPRl5eHn766acGV+zuu+9GXl4efvzxx3plZ86cifLycmzcuBEAcOWVV0KlUmHmzJmYOnXqeWdQe5KA5efnIz4+HoC748jLy0P37t2h0WhgsVig0+nA8zycTiecTieMRiMAwHLkC7AsA62agyQRWOwCdBoOPMfC6ZLgcIkI0bvfsq12AQzDQKfhQAiB2SZAq+ag4lm4BAl2pwijzt2JeAwFnYZvgKwIQgj0WndYIZPVBY2Kg1rFQhAl2BwiDFoeLMvA7hQhSdWyZpsLap6FWsX5lBUlAkMNWRXPQqPiIIoSrA4Rei0PjmXgcIoQRAKDjofNISLjVAU6xxsRblRDlAisdgF6DQeOY+FwiXAJEow6t14sdgHcOXUowllD1moX6tV3aM/pblmr1a1vnc6tQ7MZWq0WKpUKLpcLdrsdRqPRrcOqN11PIDGTyXReWUII9Hq9Wy9mM9RqNdRqNQRBgM1mg8FgAMuysNvtkCTJp6woirBarbKsw+GAIAgwGAyw2WzIyMhA586dER4eLsvq9XpwHOclC7g9BjzPQ6PRQJIkWCwWWbZ2m7VarWBZFlqtVpY9V/tuiA5DQkIAwEuHDdF3TR2aTCZoNBq/dehLVhRFsCyLrKwstGvXDiEhIdBoNH7p0Jesy+Wqvu8tFnAc12Adnk/fDodD1qHSNtvY+rZYLDhz5gw6deoEURShVqtht9tpcspmwvNcGhR2NzhG7ffxInEiteJ9v36r5cuX49VXX0VBQQF69eqFpUuXYvTo0eeU/+yzz/DKK68gMzMTYWFhmDRpEl577TVERUXVe66vv/4a06dPx/jx4zFq1CgwDIM///wTv/76K7744gtMnTq1wddaE78C640bN87rLQUAZs2ahZSUFDz22GMQRREulwss620dchwnv5k1BEII0tPT0adPH3+qJ/PSSy+hf//+6N69e4OP8XQ+QPVDjRAClmXlzgaA3JF68BgGAMCyjGy8AIBaxUKtYn3KMoy3rIpnvVYF1YyyW7+s9/LomrI8xyJEXy1beym1x1DwV5arJatRc9BU/U0IAccxUFfVkaulF42Kg0ZVXbbhvDrkoK4h65e+qzpvoEqHNX5HlUrltYKjdkRUf2Rrth2e572Ore3JrCnLcZyXrEajgUbj1qJbh5zc1s4nC0B+KAOov83W0Is/sv7oMBB9+6PDc8larVa4XC7o9XpZT/7o8ELXtyRJcLncw9oefdP5NM2PJ06wv0h+HrN+/XosWLAAy5cvx6hRo7By5UpcccUVOHz4MBITE+vI//nnn7j99tvx5ptvYsqUKcjPz8ecOXMwe/ZsbNiwod7zXXfddfj777/x5ptvYuPGjSCEoGfPnvjnn38wYMAAv+peE78MmpCQEPTu3dtrm8FgQFRUlLx9zJgxeOSRR6DT6ZCUlIQdO3bgk08+wRtvvCEfc/vtt6NDhw7yPJxnnnkGw4cPR7du3VBZWYlly5YhPT0d7777rqKL6tOnD2bMmFFnyKqh6PV69OvXT9GxFLfR0a9LRP2ClHNC22BgUP0FBtVfcMAQRtHwEUP8M2jeeOMN3HXXXZg9ezYAd5iUn3/+GStWrPA5X3b37t1ITk7GvHnzAACdOnXCvffei1deeaXB5xw0aBDWrFnjVz3ro9EH2tatW4chQ4ZgxowZ6NmzJ1566SW88MILmDNnjiyTk5PjNfGnvLwc99xzD3r06IGJEyciPz8fv//+O4YOHaq4Hs8991yjBeuhUCgUCqW1UVlZ6fXxTHqvidPpRGpqKiZOnOi1feLEifjrr798ljty5Ejk5eVh8+bNIITgzJkz+Oqrr7ymmrQEfs2haYt4xiprjjWaTCakpaVh4MCBXq5YX5Dsb5qjmq0Kk9WFvZmlGNAt0mtIqLlgkqc1+zkbG3/aIKUuVH+B4Ut/vvpKStPg0fWw0PvAM5r6D6iFQBz4u7JuhP6nn34aixcv9tp2+vRpdOjQATt37vRaefTiiy/i448/9pqQX5OvvvoKs2bNgt1uhyAIuPrqq/HVV1+1aDBGmpzSBxqNBl27dvUaM6c0HI2KQ5f4EK95MhT/oG0wMKj+AoPqLzhgFc6h8RyTm5vrZXye7/esvXqYEHLOFcWHDx/GvHnz8NRTT+Hyyy9HQUEBHnnkEcyZMwcffPCB3/VtLKhB4wO1Wt1oybIuRNQqFh1i9PULUs4JbYOBQfUXGFR/wUGgBk1oaGi93rTo6GhwHFdnaX5RURFiY2N9HrNkyRKMGjUKjzzyCACgb9++MBgMGD16NJ5//nm0b9/e7zo3BsG9WL2FEAQBJSUlchwMin8IooSSCocc8I7iP7QNBgbVX2BQ/V04qNVqDBo0CFu3bvXavnXrVp/B74DqUAQ18YRzaclZLNRD4wObzYYDBw5g0KBBdPxdATaHiANZ5RjUPdJraTel4dA2GBhUf4FB9RccKA2S5+8x//nPf3Dbbbdh8ODBGDFiBFatWoWcnBx5Mc+iRYuQn5+PTz75BAAwZcoU3H333VixYoU85LRgwQIMHTpUjudWm2nTGj638ZtvlM1NpQaNDwwGA0aMGEEzzSrEoOUxolc0VBw1ZpRC22BgUP0FBtVfcBDokFNDmT59OkpKSvDss8+ioKAAvXv3xubNm5GUlATAHSk7JydHlp85cyZMJhPeeecdLFy4EOHh4bjsssvw8ssvn/McYWFhfl+Hv9BVTgHO3KernIKPtrDKiUIJNugqp+bDo+tLQ+crXuW0vfKtC+63oq/QPrDb7Th69CiNjKkQu1PE0ZxKmm07AGgbDAyqv8Cg+qM0NYIg4JdffsHKlSvlBK2nT5/2SuzqL3TIyQeefCv+pGugVOPJseTJ2k3xH9oGA4PqLzCo/oIDhmHOm4z5nMcpGKZqTk6dOoVJkyYhJycHDocDEyZMQEhICF555RXY7Xa89957isqlHhof6PV6DBw40CuvCqXh6LU8BnaP9Mq7RPEP2gYDg+ovMKj+ggPlubaD26CZP38+Bg8ejLKyMq88Y1OnTsWvv/6quFz6xKFQKBQKJQhhoMzrENzmjDu55c6dO70SswJAUlIS8vPzFZdLPTQ+MJvN+PPPPwMay7uQMdtc2HngLMw2V0tXpdVC22BgUP0FBtUfpSmRJAmiWHeOZV5eXkBhAqhB4wO1Wo3ExMQ61iOlYah5Fh1j9VDztHkphbbBwKD6Cwyqv+CACeBfMDNhwgQsXbpU/s4wDMxmM55++mlMnjxZcbl0yMkHnpuZogy1ikNiO0NLV6NVQ9tgYFD9BQbVX3DAMgxYBZOCg30OzZtvvomxY8eiZ8+esNvtuOWWW5CZmYno6GisXbtWcbnUoPGBIAgwm80wGo3geaoifxFECWabAKOOB0+D6ymCtsHAoPoLDKq/4KC5Aus1N/Hx8UhPT8e6deuQmpoKSZJw1113YcaMGV6ThP2FPm18YLPZkJ6eDpvN1tJVaZXYHCLSj5fB5qBxaJRC22BgUP0FBtUfpSk5c+YMdDodZs2ahXfeeQfLly/H7NmzodPpsH//fsXlUoPGBwaDAcOGDYPBQIdNlGDQ8hjWIwoGumxbMbQNBgbVX2BQ/QUHDKP8E8z06dMHmzZtqrP9tddew7BhwxSXSw0aH7AsC51OVyebKKVhsCwDnYYHywb5XRXE0DYYGFR/gUH1Fxy01Tg0jz32GKZPn445c+bAZrMhPz8fl112GV599VWsX79ecbm0tfrAbrcjMzOThv1WiN0pIjPPRFMfBABtg4FB9RcYVH/BAQOFHpqWrng9LFy4ELt378bOnTvRt29f9O3bVx5uuvrqqxWXSw0aH4iiiPLycp/r5Cn1I0oEFWYnRJr6QDG0DQYG1V9gUP0FB23VQwMAnTt3Rq9evZCdnY3KykrceOONiI2NDahMatD4wGAwYMiQIXT8WCEGLY/BKXQOTSDQNhgYVH+BQfVHaUo8npnjx49j//79WLFiBR588EHceOONKCsrU1wuNWgoFAqFQglCWEb5J5i57LLLMH36dOzatQs9evTA7NmzsXfvXuTl5aFPnz6Ky6UGjQ/MZjN27dpFw34rxGxzYdchmvogEGgbDAyqv8Cg+gsOPNm2lXyCmS1btuCll16CSqWSt3Xp0gV//vkn7r33XsXl0jEBH6hUKrRv395L2ZSGo+JZtI/SQUVTHyiGtsHAoPoLDKq/4ICFMq9DsPe8Y8aM8bmdZVk8+eSTisulBo0PNBoNkpOTW7oarRaNikNynLFRylqX/w8+zvsLpU4LxkWn4NaEEegZEt8oZQcztA0GBtVfYFD9URqbZcuW4Z577oFWq8WyZcvOKccwDB588EFF56AGjQ9EUYTFYoHBYADHcS1dnVaHKEqw2EUYtBy4AFIfZFrO4JUTP+LSqBR0M7TDt4Xp+L5oP0ZHdsPSXjdDxbbd34a2wcCg+gsMqr/gQGmQvGAccXrzzTcxY8YMaLVavPnmm+eUowZNI2O1WpGWloZBgwYFlMr8QsXqEJGWWYpB3SMRoldm0EhEwrPHvkNHXSRe6nEd1CyPu5MuweYzB/Dfoxuwo+Qoxsf0bOSaBw+0DQYG1V9gUP0FB4zCJdjBmG07KyvL59+NSbAPtbUIer0egwcPhl6vb+mqtEr0Wh6DL4qEPoBl218W/It9lbl4qtvVULPucniGw9Vx/dEvtCPWn97TWNUNSmgbDAyqv8Cg+gsO2mrqg5oQQkBI48QsowaNDziOg9FopK5WhXAsA6NOBU7h2sEzjkq8dfIXXNd+EAaFJ9XZPz1+CP4uP4ksa3GgVQ1aaBsMDKq/wKD6ozQ1H3zwAXr37g2tVgutVovevXvjf//7X0BlUoPGBw6HAydPnoTD4WjpqrQKfiw6gP8e2YCtZw/DKjrhcIo4edoMh5+pD846TPjy9B48ePBzaFgVHuo0wafchJieiFDp8WUb9tLQNhgYVH+BQfUXHLTVODRPPvkk5s+fjylTpuDLL7/El19+iSlTpuChhx7Cf//7X8Xl0jk0PhAEAWfPnkVsbCw0Gk1LVyfo+bU4A7+ezcCmM+nQsDxe6jIdxopIxEZoUZ/2TllLsOXsIWwrOYKDpnxwYDEwLBGP9pyEUJXO5zEaVoWpcQPxZcG/eLDTOOg4deNfVAtD22BgUP0FBtVfcMBA2XyYILdnsGLFCrz//vu4+eab5W1XX301+vbtiwcffBDPP/+8onKpQeMDg8EQUArzCw0WDAaHJ+Op7lPwWMZX+PzsX/ig38zzHkMIwad5u7A0aytUDI9RkV1xc4dhuCSyG8JU9Y/bXxLVHatz/0S2tQQ9Qto30pUED7QNBgbVX2BQ/QUHSr0twe6hEUURgwcPrrN90KBBEARBcbnUoKE0CgQEHXWRSDHGIb0y99xyhOC0oxwvHf8RO0qO4vaEkXgg+TJoOf8CeOXZ3Pk+kvSRAdWbQqFQKM3LrbfeihUrVuCNN97w2r5q1SrMmDFDcbnUoPGBxWLBwYMH0bt3b5qcrQGwDCPPUj9oykcfbSL+yShGr+RwGHQ8rKITa/P/xr7KXBw05aPYaUYYr8OyXrfg0uiLFJ3zuKUI8dpw6Lm26Q6nbTAwqP4Cg+ovOGirHhrAPSl4y5YtGD58OABg9+7dyM3Nxe23347//Oc/slxto+d8UIPGBzzPIzo6GjxP1dMQGDAgAKyiE8fMZ3BduyGIYjXgOfddtfXsIbyV9QtGRHTB1LiB6B3SAQPDEhs0tHQujluL0FXfrpGuIPigbTAwqP4Cg+ovOGCgbD5MsNszBw8exMCBAwEAJ06cAADExMQgJiYGBw8elOX8zUlFW6sPNBoNunTp0tLVaDUwACQQOCQXGDBwMi506VAdjCutIgfdDbFY2ff2RjtnlrUYHbThsInONjkpmLbBwKD6Cwyqv+CgrXpotm3b1iTl0mXbPvCE/RZF/5YdX6gwVUNOESoDrojtg1XZv+Ppg9/hs9zd+KMkE3+VHUf/sMRGPefdiaOxvzIPd6SvhkDa3u9E22BgUP0FBtUfpTVCDRofWK1W7NmzB1artaWr0ipwDzm559A81GkCLgvrhZIcFu9m7sDcg2vAMSymxw9p1HNOaz8I7/e7A0fMBfjhzIFGLTsYoG0wMKj+AoPqLzhgGEbx50KEDjn5QK/XY8CAATTsdwNhGQaewNUxmhA81XMyzJ0FaNSXo8BVjnhtGDSsf6uYGkK/0I64LCoFq07twJWxfcAzbSeqKW2DgUH1FxhUf8EBC2VehwvVU3GhXvd54TgOYWFhNOx3A2EASDVycXAcizCDGloVj0766CYxZjzcm3Qpcu2l+OHM/iY7R0tA22BgUP0FBtVfcHAh5HJqTKhB4wOHw4FTp07RsN8NpOaQEwA4XCJOFVrgcDX9+HuPkPYYHt4ZPxa1rWEn2gYDg+ovMKj+ggM2gE8w8/vvv/sMoCcIAn7//XfF5Qb7dbcILpcL+fn5cLlcLV2VVgHDeBs0LkFCfrEVLkFqlvMPj+iCtIocuKS2M4GRtsHAoPoLDKo/SlMyduxYlJaW1tleUVGBsWPHKi6XGjQ+MBqNGDlyJIxGY0tXpVXAgkHN7O9GnQoje8fAqGu6oaaaDAlPhl1y4bDpdLOcrzmgbTAwqP4Cg+ovSFA63BTkQ06EEJ8Tl0tKSgIK5EgnBVMahZoemuamR0h76Dk19lRkoV9YxxarB4VCoTQmbS0OzbRp0wC4vfozZ870SnwqiiL279+PkSNHKi6femh8YLFY8O+//8JisbR0VVoFbK0hJ4tdQOrREljsypOM+QPPcBgYloR/y7Ob5XzNAW2DgUH1FxhUf8FBW5tDExYWhrCwMBBCEBISIn8PCwtDXFwc7rnnHqxZs0Zx+dRD4wOO4xAaGkpn+DcQptaQE8cyCDGowDXja8LgsGSsPLUDLklEW4gbTNtgYFD9BQbVH6Up+PDDDwEAycnJePjhhxs9T1iwGnItilarRffu3aHValu6Kq0ClmEg1fDQaNUcuieEQqtuvs5wSHgybJITh0z5zXbOpoS2wcCg+gsMqr/goK0u23700Ue95tCcOnUKS5cuxZYtWwIql3pofCBJEpxOJ9RqNVj2/DYf2ZvZTLUKYuzlIIJD1oVECJwSoGbdxk5zkEIktGcM+ODgT9h919pmOWdTwjAMOI6DKIpyJvPWyj8bn2j2c0oSgdMlQq3iwAbrhIIWgk24ul4Zf/pAStPR1ubQeLjmmmswbdo0zJkzB+Xl5Rg6dCjUajWKi4vxxhtv4L777lNULm2pPrBYLNi9ezcdP24gLLw9NBYB+PusAEvzTKEBAPAMi4e1g7BDyIeY3IwnbiLUajU6d+4EtbotDKA1Pxa7gL8PnW22eVxtDdoHBgdMAJ9gJi0tDaNHjwYAfPXVV4iLi8OpU6fwySefYNmyZYrLpQaND3Q6Hfr16wedTtfSVWmV6DigbwQHXTMPv4/jO2Ik1x7CJS4QrnV7NVwuF/Ly8mgcEIXoNBz6do2ETkPngCiB9oGUpsRqtSIkJAQAsGXLFkybNg0sy2L48OE4deqU4nKb3aBZsmQJGIbBggUL5G1msxkPPPAAEhISoNPp0KNHD6xYscLruKNHj2LUqFFISEjAs88+67UvOTkZDMNg9+7dXtsXLFiASy+91O868jyPiIgI8DwdkWsItT00PMsgQsOCb2a/J8MweEw7BDASiINatyEgSRKsVhskqXmCE7Y1eI5FRKgGPEff2ZRA+8DgwDPkpOQTzHTt2hUbN25Ebm4ufv75Z0ycOBEAUFRUhNDQUMXlNuvdvmfPHqxatQp9+/b12v7QQw/hp59+wpo1a5CRkYGHHnoIDz74IL799ltZZu7cubjtttvw7bff4rvvvsPOnTu9ytBqtXjssccapZ5OpxO5ublwOp2NUl5bh4F3HBqnSJBnkeAUm99LksyFgkvjIQ4SIMW23sjBHMchIiKcrjJRiNMlIu+MBc5mSL/RFqF9YHDABPAvmHnqqafw8MMPIzk5GUOHDsWIESMAuL01AwYMUFxusxk0ZrMZM2bMwPvvv4+IiAivfbt27cIdd9yBSy+9FMnJybjnnnvQr18//Pvvv7JMeXk5BgwYgL59+yI+Ph4VFRVeZdx7773YvXs3Nm/eHHBdnU4nsrOz6c3cQNy5nKpxSkC2RYKzhZwL3L8qMEUsXNc6IMW3zgcaz3OIiooCz1ODRglOl4TsQhOcLurhUgLtA4ODtuqhuf7665GTk4N///0XP//8s7x93LhxePPNNxWX22wGzdy5c3HllVdi/PjxdfZdfPHF2LRpE/Lz80EIwbZt23Ds2DFcfvnlssyzzz6LCRMmQK/Xg2VZr32Ae9hpzpw5WLRoUcBueqPRiNGjR9Ow3w3EHYem2qQxqhhc3I6HUdUydxUjMFB9qwFTyMJ1jQNiUssaNURF4BrvgOsqO5zX2OGcZofzBjucN9ngnGGD43YbHLNscMy2wnGvFY4HrTAPM+NYcSbsNDmgIox6FS7uFwejvnnSb7Q1aB9IaWri4uIQEhKCrVu3wmazAQCGDBmClJQUxWU2i0Gzbt06pKWlYcmSJT73L1u2DD179kRCQgLUajUmTZqE5cuX4+KLL5ZlJk+ejLNnz+L06dPYsGGDT1f8f//7X2RlZeGzzz7zu45ms1n+22KxwG63A3DPZTCZTHJmUKfT6SVrFQjsVUMrEiEwuQgEyf3dKbm/15S1Ce7vpErWVSXrqpL1GAY2P2WtQvV5TC4CZ5WsUCUrVcnaRW9Zs4vIQ0O+ZC21ZB1VsmKVrEgIWACMxHnJWoQaslX1F6vq5BAJzC5v2XPqsJZsQ/XNCAz0PxuhydFCuNIBsasAjUYjL0FlWdYr7LZKxUOlqn74aTQacFxDZdVye6wty/M8VDE8pB4iiBrQOrTgTTyYEgZsAQ9djh58Jg/uEAdNug66Pe5AU1I/AewtBFyi2yhkGAYajUaO3cBxnNcKKLVaLc93qF9W5TU3oqZeOI6DRlMtq1KpoFKdS7a2Xs4t6xIkmKyu6jbrEGCtsQLJZHXJw0NClaxU9bvaa8maa8qKtWSdIiy26vlTZpsLDqdbVqySldthLVlLTVmJuGVFSZY115K1V8lKVbJClazTJcJsrZa12gXYHYK3rFAta6ola6uSJcQt60ny6kuH/sh66dtkkr0vgiDAZDLJL4J2ux1Wq7Vah2Yz9dS0EG11lVNJSQnGjRuH7t27Y/LkySgoKAAAzJ49GwsXLlRcbpMbNLm5uZg/fz7WrFlzziBNy5Ytw+7du7Fp0yakpqbi9ddfx/33349ffvnFS06j0SAmJuac54qJicHDDz+Mp556yu8b8PDhw/Lf6enp2L59O6xWKxwOB1JTU2UjprCwEOnp6bLs0QoRp8xVnYgEpJUIqKh6qJ61E+wtrfYOZJokZFXJisQtW+Z0y5Y4CNJKqjucEyYJJ0zVnqa0EgElDrdsmdMt65mikmWWkFlDdm+piLN2984Kl1vW43k/ZZZwtKK6TvvKRJypkjULbllH1e48i4SMGrIHy0UU2NwFWUR3nWyC20NjcIThULlb1ioQbDntkutvr5I1V11eoY3gQHl1uUcqRORaqjr4Kh16DJMiO0F6WbXssUoR2VU6FKp0WF6lw+Ja+o6Lbof26fFgMzmIE11I6t5RjkxpMBiQlJQoP/RjYmLQrl1120pKSpTfTvV6HZKSEuWHc1RUFGJj28myiYkdERLiltVqtUhKSpQNhqioSLQPbw8A4Heq0CmzM6JTY6D6TYOQf0LQ5UxX6FL14P9RI+ZUDBJLE6H+nw6G70PQr6QfoiOiAbgNlqSkRNkwCQ8PR4cO8XId4uPbIyIiHIDb4EpKSoRW6zY2wsJC0bFjQrVe4uIQFRXprhPvkXXfmyEhRiQmVufDio1th6ioKABuYy0pKRF6vXvli9FoRFJSoizbrl2MfH8yDIOkpERZ36WVDqQdKZYNj5P5JhzPrZSP3Xu0GMXlbm9UudmJtCPFsoGQXWDGsZzqIeb0zBIUlbpfOEwWF9KOFMsGTm6hGUdOVcBqF5B+rASpGcUoLHG//ZltAtKOFMvGRV6RBYdOlsvlHjpZhvyz7mXKNodb1rPsu6DEioPHy2TZjOxy5J1x9wkOl4i0I8WyEXOm1IZ9mdWZhI+eKsepQne5LkFC2pFiVFjc/dPZcjv2Hi2RZTNzK5B12gTAbVSlHSlGmcmtl5IKO9KOFMuyJ/IqcSKvWodpR4pRUuHWS5nJrW+P8ZZ12oTM3GodpqWl4ezZswDcGY5TU1PlFXWnTp3C/v37sXfvXlitVqSnp6OwsBCU5qetDjk99NBDUKlUyMnJgV6vl7dPnz4dP/30k+JyGdLEUbs2btyIqVOnenlURFEEwzBgWRYVFRWIiIjAhg0bcOWVV8oys2fPRl5eXoMuLjk5GQsWLMCCBQtgNpvRtWtXPP7448jOzpaNk3NRWVmJsLAw5OfnIz7e/YAoLS1FXl4eunfvDrVaDYvFAp1OB57n4XQ64XQ65Yed+cuXwDKAlmMgEQKL4F62zLMMnBKBQwRCqoZerAIBA0DHu4dozAKg5QAVy8AlEdhFwMi7HwYe70xDZQkAPe8+j8lFoOEANctAkAhsImDg3UHu7CKBRKplzS4CNQuoOd+yIgEMNWRVLKDhGIgSgVUE9DywwrEPPzpy8YXhKhh493FHKkR0MrIIU7MQCYFVAPScOy2CQyRwSZCHpCwCAXcuHYruIH3GGjqsT9/jXtkAAFVeFAIn74LzLhsMW0MgZRJIkgSWZaFSqeCoGtJxexYYuVPXaDQQBPcbev2yagiCCFEU68jyPA+EE1huNkH1tQbaYh1EUZTvAbVaDafTCUIIeJ4Hy7JwOp3gDBxibohEya5SuI7WleU4DhzHyYa7Wq2GJEkQBKEBsipIEpG9jhqNBi6XC5IkgeM48DwHh8PppUOXy5csC56vqRffsru/WQSXIMHuFGHU8e426xBACKDXug0/k9UFjYqFWsVBECTYnCIMWh4sy8DuENxttkrWbHVB7ZEVJdgcNWSdIkRRAscyyC4wIyZcA6NeDY2agyhKsDpE6LW8ux06RQiiBENVVniLzQWeY92yEoHVLkCv4cBxLBxOES5RkjPIW2wucBwLrZqDJBFY7AJ0Gg48x8LpEuF0SfJwl9UuuNushq+WVXPgebeswyUhpIYswwA6De++720CtGoOKp71qUOg4bIefbMJV8NkMkGj0UCtVkMQBNhsNhgMBrAsK3toioqKkJycDEEQoFarYbfbERYWhoqKioBWolDqx/Ncerzz/0HL+R+t2S7a8dLJF4P2t4qLi8PPP/+Mfv36ISQkBPv27UPnzp2RlZWFPn36eI2C+EOTr8kbN24cDhw44LVt1qxZSElJwWOPPQZRFOFyuepEo+Q4TtFcGKPRiCeffBKLFy/GlClT/DrOQ2RkJCIjI+XvnvXygPvBUdN97zEMALcREFJjyF7NMlDXuKyaskwtWRXLQFVDVqdQFqg2oAD3gz6khqyW85Y1KpTlasiGMGoUMpX4XDyI27me0HIc+kdWNy2uVv01HIOa4UEM59Mhx6BmBgV/9C3HcHEBsAP2UDt4yX2AJEnyg9gt6x2Area++mWd55QVBAHETAAJkBJFOE9XyxJC6sjW/PtUyCnwghoc+DqyHqPIQ02PZP2y3kvazydbOw6Ot6wEUXQ0SFbFs1Dx1T+OTuPd9YTUmOvC8yxCashqa8nWnBfDcyxC9DVk1RwAd4NJSQ73Oo6rJatRc9CgunF5DBugqn3XOM/5ZNlasmoVB7WqWtZjiPkryzDesufToT+ygHefxvO813etVgutVuvVBwKQh+EplECxWCxenhkPxcXFXsPY/tLkQ04hISHo3bu318dgMCAqKgq9e/dGaGgoxowZg0ceeQTbt29HVlYWPvroI3zyySeYOnWqonPec889CAsLw9q1ykLge8J+0xggDeNGdXfMUKfgPcd+XG/5HqWiHU6pei5OS8OAAVPGgkS2zO/J2Blwf6sgDhYgdWz4BGVOoiuclOJJfeAZ4qL4B+0DgwMGRPEnmLnkkkvwySefyN8ZhoEkSXj11VcxduxYxeUGRdSpdevWYciQIZgxYwZ69uyJl156CS+88ALmzJmjqDyVSoXnnntO8RuFxWLBX3/9RcN+NxAdw+M/2kFYb7gSZyQrvrCfxK6i5k19cD4ICEgoAWNu3oFlwhIII5wQuwhgC1hABIQRDQv4p1FpcFHFRdDwyt9WLmQsdgG7DhTR1AcKoX1gcNBW59C8+uqrWLlyJa644go4nU48+uij6N27N37//Xe8/PLListtkTCQtee0xMXFyWnFlZCdnV1n280334ybb75ZUXk6nQ69e/emYb/9pCsXjimqzvjaeQSfhHdv9tQH54JEE8BIwJ5q3gqRSAJxcPUDlSliwO9o2DJil+BCjjEHLkkAExzvHa0KnZpDr84R0DVjxve2BO0DgwOlK5aC3J5Bz549sX//fqxYsQIcx8FisWDatGmYO3cu2rdvr7hcGtfaBzzPIzo6uqWr0Sq5VZ2Cr1yZ+Js9hWvZLi1dHQCAlCQCToA53cyGgcrt9uW/VwMSAzaHBUMa1tVIkgSzygaeqMFRg8ZveJ5FdLj/kykpbmgfGBy01WzbgNuR8cwzzzRqmdSg8YHT6URxcTGio6NptmM/6cSF4RK2I74y5eGK8E7QBEEuHSlRBJvHgZHqv8uJmkDsI4DbyzdI/rxUOWPYsywYs3964DgOEY4IWBk6EVMJTpeI4nIHosM1XpNuKQ2D9oGUpmT//v0+tzMMA61Wi8TEREWTg6lB4wOHw4HMzEyEhITQm1kBN3IpeNeSh590ebhGn1j/AU2NCBA9AQGpN8eJ2N8FcZgApoIBdzyw24NUeWjg8t8w4jkecbY45HB5ENA60ze0JA6XhON5FQgxRFODRgG0DwwOWCib6Nryr5Hnp3///nIMME/kGM93wD0Pdvr06Vi5cuU549f5Itivu0UICQnBmDFjvJYyUhrOxdp26BhtxavCbhRKLT+pkNuvAomTQOKqV2wQEEhREqRICcQogWgIiIpA7Oue8yL2DGwyKTFIEAcIgBPuZeN+4nA4kBGeAYdIUx8oIUSvwiUD2nstZaY0HNoHBgcMo/zjL8uXL0enTp2g1WoxaNAg/PHHH+eVdzgceOKJJ5CUlASNRoMuXbpg9erVDTrXhg0b0K1bN6xatQr79u1Deno6Vq1ahYsuugiff/45PvjgA/z222/473//69c1UA8NpdFhGAZP6obievMPeML2F1bpx4FjWs52ZrNZMGUMhLFOcP+qQCIliCkiEOpjaaMEcP/wEIcIIKESCAuQRBFSRwlSvAi2kAW3Sw22uPp6iEGC2F8A0RJA5R62Iu0kQGCg2qgJfOiKQqFckDTXHJr169djwYIFWL58OUaNGiWvQDp8+DASE3172W+88UacOXMGH3zwAbp27YqioiKvWFrn44UXXsBbb73llZOxb9++SEhIwJNPPol//vkHBoMBCxcuxGuvvdbg66AGjQ+sVisyMzPRrVs3n8F/KOfHKhBkm3g8pRuFB5xb8YkzA7M0vVqsPgwY8L+oIVzsgjDJCTgB9hgH7hgPiADUVcNDaoCxMGBOsxB7C3DeanfHaBMBpoAFd4CH1FWE6yY72KMc+H9UIBwgTHC4l4WXsYALYJwMmGM8+D0qMDZlxoxKpUKcOQZn2RJIQR5TIhix2gUcz61E146hXsHqKA2D9oFtg8rKSq/vGo3G59yUN954A3fddRdmz54NAFi6dCl+/vlnrFixwmcOxp9++gk7duzAyZMn5QCMycnJDa7XgQMHkJSUVGd7UlKSHIi3f//+co6nhkLvdB8wDAOe573G9CgNhwHAMcAgvh1mohfecezDMD4OPbmoFqsTW8hB/RUHEioBVgaMcP7fVr1OC7GbCKacBZvPgqmaB0P+IZB6CBCGueBMqZrb4gRUX2u9vDYBQwgkhgY1UwrDABzHKHK9U2gfGCwEumy7Y8eOXtuffvppLF682Gub0+lEamoqHn/8ca/tEydOxF9//eWz/E2bNmHw4MF45ZVX8Omnn8JgMODqq6/Gc88916Cl/ikpKXjppZewatUqeY6Wy+XCSy+9JGfbzs/PR2xsbAOuthpq0PhAp9OhV6+W8yi0dnQ8g17h7omYc7m+2C0UYJFtJ9YaJkPPtGyTYyobZnQwFhZ8el1ZRmLAHVKBPcpD6iy6PTpnWTDOxu34XS4BeYa8qmXb9Db1F52GR6/OES1djVYL7QODg0CHnHJzc71yOfnyzhQXF0MUxTrGQ2xs7DmTkp48eRJ//vkntFotNmzYgOLiYtx///0oLS1t0Dyad999F1dffTUSEhLQt29fMAyD/fv3QxRFfP/99/I57r///oZeMgBq0PiEkOoEhvQNxX8IcSfAZBlAxXBYohuFmyyb8bo9FU/qhrV09RoFRmDcQ1ZNeY4GxqxRAvEMY3lOUftUEupdERbMuO9hApZl6D2sANoHBgeBrnIKDQ1tcHLK2r8zIeScv70kSWAYBp999hnCwsIAuIetrr/+erz77rv1emlGjhyJ7OxsrFmzBseOHQMhBNdffz1uueUWeSL6bbfd1qB614QaND4wm81ITU3FoEGD6Cx/BZgFIK1EwMAoHiEqd2yah7WD8Lz9H/ThonGtOjgC7gUzGrUGXcs74eQlJ2EfY3VvPJfxUXs708B954FL5cH/1XqX65ptAtKOFGNgSjRd6aQA2gdeOERHR4PjuDremKKionMO+bRv3x4dOnSQjRkA6NGjBwghyMvLQ7du3c55PpfLhYsuugjff/+94vRG54IaND7QarXo0aOHX+vfKdVoOSAljIO2RviP61XdkCGW4jn7brRjdRjJx7dcBVsBgl1A4b4zENUEHKl6INeeG0zq/s+cZ5+8t/a+Wn+LA1wgYa17IrJWzSElObwq+zbFX2gfGBwoXYLtzzFqtRqDBg3C1q1bvRJCb926Fddcc43PY0aNGoUvv/wSZrMZRqMRAHDs2DGwLIuEhITznk+lUsHhcDSJ548aND5QqVR+T0aiVKNiGcTqvBsrwzD4P+1QFBErHrb+gQ8NE3ERR+c4nAtJkmA5YAMLDiya96EsdROCPxlMPah4FrGRNA+RUmgfGBwwIGAVrHL0N9v2f/7zH9x2220YPHgwRowYgVWrViEnJ0f2oCxatAj5+flyhuxbbrkFzz33HGbNmoVnnnkGxcXFeOSRR3DnnXc2aFLwgw8+iJdffhn/+9//wPONZ4ZQg8YHLpcLpaWliIyMhEpF3dX+4pIISh0EkRoGqhoz2niGxSu60bjLshV3WbbiQW0/XK/q1qIxaoIVlmVhMBhgsVggSc282kliWr1B4xIklFY6EBmqgYqn7ctfaB8YHDSHhwYApk+fjpKSEjz77LMoKChA7969sXnzZnlpdUFBAXJycmR5o9GIrVu34sEHH8TgwYMRFRWFG2+8Ec8//3yDzvf333/j119/xZYtW9CnTx8YDAav/d98841/F1AFNWh8YLfbkZGRgUGDBtGbWQF2EThSIWJgFA9VrWeJnlHhPcM4LLXvxRL7HnztPI5ndSOQwkW2TGWDFJVKhfbt43DqVA4cjmaOFkwAcK17yMnuFHEkuxwDU6KpQaMA2gdeeNx///3nXFX00Ucf1dmWkpKCrVu3KjpXeHg4rrvuOkXHng9q0PjAaDTikksuobP7FWLkgdGx/Dlf8sMYDZ7WDcd16q5YbNuNhdbf8bXxKmhbeEl3MOHOpXNcznPSrBCgCRdYNQtGHY/R/eNoHBqF0D4wOGiruZw+/PDDJik32K+7RWAYhi5XDACGYcAy9S+X7c1F4zXdJThDrHjfcbCZatd6aBFjBgAktPqewX0P0yXbSqF9YHDgiUOj5HMhQl+JfWCz2XDixAl06dKlQROcKN7YBIKTZgmdjSx0/PnvrGQuFLM1vfG+4yCmqrsigTU2Uy2DG5WKR0xMDM6ePQuXK7BEmX5D0Orn0NgcAk7mm9C5Qwh0GtrN+QvtA4ODQCMFBzNfffUVvvjiC+Tk5MDpdHrtS0tLU1RmK38PazqafSJmG0Pyw7lwqzoFAiTsFYqarkKtDo93oQW6JoI20TNI/jRCSh1oH0hpKpYtW4ZZs2ahXbt22Lt3L4YOHYqoqCicPHkSV1xxheJy20C31fjodDr07duXvpkoRMcz6BPB1eud8WBk1IhnDDgulTdtxVoRLpcL+fmn4XK5mv/kElrHK9550Gl49OkaSb0zCqF9YHDgHj4iCj4tXfPzs3z5cqxatQrvvPMO1Go1Hn30UWzduhXz5s1DRUWF4nKpQUMJCrpx4cgUy1u6GhSgTQw5UShtASaATzCTk5ODkSNHAnAbzyaTCYA73cHatWsVl0sNGh+YTCZs375dVjLFP0wugh2FLphcDXf5d2XDqYemBhqNBt27d/OZTK7JYeH20rRiTFYXdqQVwGRtAQ9XG4D2gcFBW50UHBcXh5KSEgBAUlISdu/eDQDIysoKaDEENWh8oNVqcdFFF9Gw3wrRckD3UO/UB/XRlQvHGWJFJWnmmCtBiiC4cObMGQhCCzyQWQBi85+2MdGqOXRPDKOpDxRC+8DggA3gE8xcdtll+O677wAAd911Fx566CFMmDAB06dP90q/4C90gNkH7qBm7Vu6Gq0WFcugvd6/V4SLWHcahIetf2CquivG8gkXdFwaUZRQUVHZMifn0Oo9NCqeRftofUtXo9VC+0BKU7Jq1Sp50vmcOXMQGRmJP//8E1OmTAkoYeWF+8Q4Dy6XC+Xl5QgPD6dRMhXgkgjKnQThau/UB+ejCxeO57Uj8ZUrE4/b/oQRKtykvggPavs3bWWDFJZlodfrYLXamn+1CUfAiEHus64HlyCh3OxEuFFNIwUrgPaBwQHDEDCMglxOCo5pTliWBctW35c33ngjbrzxxoDLpQaND+x2Ow4dOkTDfivELgKHy32nPjgfU9SdMUXdGafESnzizMD/nAdxvbob2rOG+g9uY6hUKsTHx7dI6gPCAiRahDDSCe4vFZign2JYF7tTxOGTZTT1gUJoHxgctKVIwfv372+wbN++fRWdgxo0PjAajRg1alSjZgG9kDDywMh2PBq4arsOSVwo5msHYIPrOP4U8nGDunvjVrAV4HA4cPz4iRaJBcLtV0Ec6II4SAD3rwpw1n9MsGHU8RjZNxY81/qMsWCA9oHBAaNwgm8wBnju378/GIapd9IvwzAQRWWT+Ghr9QHDMPStJAAYhoEqwBsqlFGjLxeNncLpC9KgAVousBmXzQEMgdDBGZyveg2AYRiolFrUFNoHUhqdrKysJj8HNWh8YLPZkJ2djeTkZBpYSgE2gSDbIiHZUH/qg/NxMd8BHzgOokSyI4q9sFZbqFQ8oqKiUFJS0vypDwBAqvrduNYZlMbmEJBdYEZyeyMNrqcA2gcGBwwIGCiYQ6PgmKYmKSmpyc/RSt+/mhZCCBwOR8slB2zlEABOkQR8S01UJYEFg8nmDXjTnoZSyd4Y1WslMFXu/pYxJhiPc6iV9hCEAE6nCHoLK4P2gcFBW41D01S00u6qadHr9ejfvz/0errsUwl6nkG/SB76AF3+iWwIfjBei9vUPfCF8xiuMG/A30JBI9UyuHG5XMjLy2+Z1AdA9bLtVtpD6LU8+nWPgl5LvTNKoH1gcEANGv9opd0V5UIhnNXgAW1//GicCh3DY49wpqWrdGFQZdAQ2kNQKJRWAu2ufGA2m/H777/DbDa3dFVaJWYXwR9nBJj9SH1QH+GsBtoLaMqXRqNGt25doNGoW6YCrdxDY7a68Ed6Icw09YEiaB8YHHjm0Cj5XIhcOE8IP1Cr1ejcuTPU6hZ6mLRy1BzQOYRFY0edl0BaZUwUJQiCiLNniyEILZSDwBNYr5UaNGoVi87xIVD7EwiJIkP7wOBA6fBRaxlySk1NRUZGBhiGQY8ePTBw4MCAyqMGjQ/UajUSEhJauhqtFjXLoIOfqQ8aAkGrfb76jSiKKC+vaLkKyB6a1vmmp1Zx6NDuwgvI2FjQPjA4aEurnGpSVFSEm266Cdu3b0d4eDgIIaioqMDYsWOxbt06xMTEKCr3Qnk++IUgCCgtLYUgtMBy2TaAIBGUOiQIUuPeVAQETDBGjGoC3KkP9F7hwZsVz0/XSnM7CqKE0koHBLGVJ6VqIWgfSGlKHnzwQVRWVuLQoUMoLS1FWVkZDh48iMrKSsybN09xudSg8YHNZsP+/fths9lauiqtEpsIHCgTYWvk0ZLAF4K3HlQqFRISOrRYcDPG89u10h7C5hBx4HgpbI5Wnja8haB9YHDQVlc5/fTTT1ixYgV69Oghb+vZsyfeffdd/Pjjj4rLbaXdVdNiMBgwYsQIGAzUZa0EAw8Mj+FhaOQBTT2jwj9CIWyk7b81OhwOnDyZ1ex5nGRa+aRgg5bH8N7tYKDLthVB+8DggA3gE8xIkuTzZU2lUgUUIT3Yr7tFYFkWGo2m5dz9rRyWYaDhGLCNPDz0lHYYDoklmGfdfkEYNS3q7q+KFNxal22zLAONmgMb7K+qQQrtA4MDT7ZtJZ9g5rLLLsP8+fNx+vRpeVt+fj4eeughjBs3TnG5tLX6wG634+jRo7DbL6TItI2HXSQ4VinCLjbuTTWEj8Ny/WU4IBbjAeu2Nm3U8DyP2Nh2LZccsJVPCrY7RRzLqYDdSYeclED7QEpT8s4778BkMiE5ORldunRB165d0alTJ5hMJrz99tuKy6X+WB9IkgSz2dxiyQFbOxJxx6Jp5DnBAIBBfCxW6C/Dndat+MmVjanqro1/kiCAZZmqN+QW8jC08iEnSSIwW12QmqIRXgDQPjA4UDp8FOy3bceOHZGWloatW7fiyJEjIISgZ8+eGD9+fEDlUoPGB3q9HoMGDWrparRa9DyDgVFN17QG8O2QwBpxXCpvsnO0NE6nCzk5uS1XgVZu0Oi1PAamRLd0NVottA8MDhgQsAqGj4J92fYnn3yC6dOnY8KECZgwYYK83el0Yt26dbj99tsVlUsNGkqrpDMbhpNiC8ZpaetUGTRiDwGknQSIVdtERv6bEau+S/Daz8h/u7+ftBQhWR+N4+YiFDtNGBnVrSWuiEJpdTBQlp422GeOzZo1C5MmTUK7du28tptMJsyaNYsaNI2J2WzGvn370K9fPxiNxpauTqvD7CLYXyaibwQHo6oJAuwRgkrihBTkbyGBoFar0bFjAnJz8+B0Opu/AhLAZnIgERIkowjCwe2t4UjV/1WfBnhwpu5+C92Mscg0n4GK4fDvZc82adUBwGxzYX9mKfp2i4RR1zJL31sztA8MDlhGmYdGyTHNCSG+Y4rl5eUhLCxMcbnUoPGBJ0omDfutDDULJBhYqJtouOJn4RTSxCK8qxvbNCcIAkRRRFlZGUSxZSa1MmCg+klTrxxhSPVAPwfZ4CE1DJ7HF1+OJUe/BwDM6XxZE9a6GjXPIqGdAWq+lY6ZtTC0D6Q0BQMGDADDMGAYBuPGjfNa9CCKIrKysjBp0iTF5VODxgdqtRpJSUktXY1Wi5pjkGhoGqenhbjwmj0VY/mOuFjVoUnOEQyIoojS0rKWrka9MKRqCEoE4AI8zu6av/71HYYiXKXHwgNrcUVsv2apl1rFITGOehaUQvvA4KCt5XK69tprAQDp6em4/PLLvbx/arUaycnJuO666xSXTw0aH4iiCLPZDKPRCI5rpbHfWxBRIjALgJEHuEa+s1Y5DqCSOPGItm1PWGQYBlqtBna7A4QEt/u4IUSo3AHarGLzDJ+JogSzTYBRx4PjqJfGX2gfGBy0tVxOTz/9NAAgOTkZ06dPh1arbdTy6Z3uA6vVir1798JqtbZ0VVolVhFILxVgbeTRkpNiBdY4MzBb0xsd2Lb99u2eQ9Oxzbj8Y7XucfFMc2GznM/qEJF+rARWmvpAEbQPDA7aauqDO+64o9GNGYB6aHxiMBgwdOjQJlH4hYCBB4ZE89A24osdIQRL7HsQzxpxh7pn4xUcpDidTmRnZ8Plav3BA/NtZZib/jEiVAb0DevYLOc0aHkM6RkDrZp6F5RA+0BKayQgD82SJUvAMAwWLFggb/NM+Kn9efXVV89ZzkcffeTzmJpRKs1mM2666Sa0b98eN910EywWi7xv5syZYBgGL730kle5GzduVJSducUzHbdyWIaBnm/c1Ae/CDn4RyzEfM0AaJi2/5AihMDpdLX64SYpQsId/66EQCR8MvheJOgim+W8LMtAr+Vp6gOF0D4wOPAMOSn5XIgobq179uzBqlWr0LdvX6/tBQUFXp/Vq1eDYZh6J/qEhobWObbm28HSpUthNBqxZcsW6PV6LF261Ot4rVaLl19+GWVlgU+kdDgcOH78eMslBmzlOESCEyYRjkZMfWAnIngwWGzbjbft6SiR2nYWYJ7nERMT3XKpDxoJcYALHMPi40H3IFEf1WzndThFnMirhIOmPlAE7QODA8+ybSWfCxFFBo3ZbMaMGTPw/vvvIyIiwmtfXFyc1+fbb7/F2LFj0blz5/OWyTBMnWNrUl5eju7du6NPnz5ISUlBRYV3ULXx48cjLi4OS5YsUXJJXgiCgNLS0pZNDtiKEQhQ6iAQGvGemqLujB+M1+JadRd87jyCa83foZK03c6WZVkYDIZW/4ZMIgkGRXRCtCakWc8riBJKKx0QRBq6Xwm0DwwO2uocGg9OpxNHjx5ttHamqLecO3currzyynrzLpw5cwY//PAD7rrrrnrLNJvNSEpKQkJCAq666irs3bvXa/8DDzyAlStXQqVS4cMPP8T8+fO99nMchxdffBFvv/028vLy/L+oGnjGjw0GQ0DlXKgYeAZDonkY+Ma9q+JYAx7WDsKnhkmohBOHxdJGLT+YcM+hOdUyQfUaCQICEiGhi6Fd/cKNjEGnwpCeMTDQoHqKoH0gpSmxWq246667oNfr0atXL+Tk5AAA5s2bV2fqiD/4bdCsW7cOaWlpDfKEfPzxxwgJCcG0adPOK5eSkoKPPvoImzZtwtq1a6HVajFq1ChkZmbKMsnJycjMzERubi4OHz6MDh3qxiCZOnUq+vfvLy8N8wez2Sz/bbFY5Pk7kiTBZDLJFqTT6fSStQpEziotEQKTi0CoSojnlNzfa8raqtwWpErWVSXrqpL1zJmw+SlrreEOMbkInFWyQpWsVCVrF71lzS4Cp3huWUstWc8wklglK1bJOmrJWoQaslX1F6VqWbPLW/acOqwlaxUI2pMQ6MDjiFB2Xn2rVCqoVNVDNu5kj+4mz7IsNBpNDVkeKpXKS9az3Ld+WbW8tLW2LM/zUKurZdXqalmGcSeg9MzzcsuqGyTLcVwdWc/wVP2yKq+hrJp64TgOGk217Pl0yHG19VJLNlwDVs2ikyEGLkGCyVo9J8jmEGC1V7+VmawuOF3u4SGhStaTWNJeS9ZcU1asJesUYbG5qmVtLnnYSaySldthLVlLTVmJuGWrPDwOpwhzLVlPJm+pStbjDXK6RJit1bJWuwC7Q/CWFaplTbVkbVWyhLhlXVWyvnToj6yXvk0m2VgWBAEmk0lORGm3271WN5nN5lZtWLdm2uocmkWLFmHfvn3Yvn2719SS8ePHY/369YrL9cugyc3Nxfz587FmzZoGzX5fvXo1ZsyYUa/s8OHDceutt6Jfv34YPXo0vvjiC3Tv3r1OGnGWZREXF3feib4vv/wyPv74Yxw+fLhhF1VFTfn09HRs3boVFosFDocDqampshFTWFiI9PR0WfZohYhT5qpORALSSgRUVD1Uz9oJ9pZWj+FnmiRkVcmKxC1b5nTLljgI0kqqO5wTJgknTNXu8rQSASUOt2yZ0y3rmaKSZZaQWUN2b6mIs3b3zgqXW9ZVtfuUWcLRiuo67SsTcaZK1iy4ZT0rXfMsEjJqyB4sF1FgcxdkEd11slVVOd8q4VC5W9YiEGzOc+F4VZ3sVbLmKtlCG8GB8upyj1SIyLVUdfBVOvQYJkV2gvSyatljlSJyLUB3LhyHhTKklQgor9JhcS19x8bGIDranaCQYRgkJSVCF6+D80Y7dN21SEpKlNtSTEwM2rWLkY9NSkqUgz7p9TokJSXKD/KoqCjExlZ7HRITOyIkxC2r1brL9RgMUVGRXsOnHTsmICwstEpWg6SkRNkIiIgIR3x8ewBuA6Vv396IiYmWvyclJcqGSXh4ODp0iJfLjY9vj4iIcABugyspKRFardvYCAsLRceOCbJsXFwcoqLck3N53iPrvkdDQoxITKxeiRQb2w5RUe65LyzLIikpEXq9DgBgNBqRlJQoy7ZrF4OYmJhqfXftiBAhBE5JwOsHtuLV33/Hwn1rMTf9YyzauQm/Z2bLx+49WozicvcQYrnZibQjxbKBkF1gxrGc6iHm9MwSFJW6XzhMFhfSjhTLBk5uoRlHTlXAYnPh74NFSM0oRmGJe76V2SYg7UixbFzkFVlw6GS5XO6hk2XIP+tebGBzuGUtVUZAQYkVB49Xz8/LyC5H3hl3n+BwiUg7UiwbMWdKbdiXWe09PHqqHKcK3eW6BAlpR4pRYXEbCGfL7dh7tESWzcytQNZpEwC3UZV2pBhlJrdeSirsSDtSLMueyKvEibxK+XvakWKUVLj1UmZyIO1IsWy8ZZ02ITO3WodpaWk4e/YsAKCiogKpqalwudz1P3XqFPbt24fdu3fDYrEgPT0dhYXNs9ye4k1bnUOzceNGvPPOO7j44ou9nuc9e/bEiRMnFJfLED+WUWzcuBFTp071CrQkiiIYhgHLsnA4HPK+P/74A5dccgnS09PRr5//0UHvvvtu5OXl4ccff6xXdubMmSgvL8fGjRsBAFdeeSVUKhVmzpyJqVOnnnelSGVlJcLCwpCfn4/4ePcDoqysDEVFRUhOToZKpYLFYoFOpwPP83A6nXA6nfLDzvzlS2AZQMsxkAiBRQB0HMCzDJwSgUMEQqryGVkFAgaAjmdAiDv4nJYDVCwDl0RgF93B6BiGkb0zDZUlcGe5BtweGg0HqFkGgkRgE91LqVmGgV0kkEi1rNlFoGbd0X19yYoE8tCR2UWgYgENx0CUCKwioOcBjmHgEN1zZgy8+++TZhEddCxC1SxEQmAVAD3nDrTnEAlcEuQ8TxaBgDuXDkUCZw1Zq0DAMsAHrv1Y5TiAPiQOV2uTcJUmGTzhYRZETHp1EwBUeVGIvPRZFaOC9SoTJK0EVmKh/94IV37VPhUPgJE7dY1GA0Fwv6GzLAuVSiVPkPTIOkUnQACtWgNBECGKYh1ZnnevtHE63eWq1WqIoijfN2q1Gk6nE4SQKlkWTqcTHMchJiYapaVlcDqddWQ5jgPHcfKbs1qthiRJEAShAbIqSBKRvY4ajQYulwuSJIHjOPA8B4fD6VOH3rIseL6mXrxl+QEsbCOtkFgJcapwJKpjwKsBLa9CenEuLm/XF4/3nuxus1YXNCoWahUHQZBgc4owVK1SsjsEd5vVug0/s9UFtUdWlGBz1JB1ihBFCTzH4nSxFWEGFQw6FTRqDqIoweoQodfy7nboFCGIkjwsZbG5wHOsW1YisNoF6DUcOI6FwynCJUpyXiiLzQWOY6FVc5AkAotdgE7DgedYOF0inC4JRr1b1moX3H2Ehq+WVXPgebeswyUhpIYswwA6De++720CtGoOKp6FS5Bgd4ow6nj3fV9lmDVUllTpkE24GiaTCRqNBmq1GoIgwGazyXO27HY7bDYbysvLER8fD5fLBbVaDbvdjrCwMFRUVCA0NPScfSolcDzPpV9HPgADX38KktpYBAfG/fVO0P5Wer0eBw8eROfOnRESEoJ9+/ahc+fO2LdvHy655JI6c2Qbil9LKMaNG4cDBw54bZs1axZSUlLw2GOPeRk6H3zwAQYNGqTImCGEID09HX369PH7WAB46aWX0L9/f3Tv3r3Bx9QMwRwREeE12TkkpHpCo1qt9nLf62vME2EZBiE1huzVLOOVz6imLFNLVsUyUNWQ1SmUBaoNKMBtFITUkNVy3rJGhbJcLVkNx0BT4+8eYdVNi6tVfw3HQFNj5bXhfDrkGNQMJeLR4Ry2D3pzUfjKlYklzn/wpjMVF3ER2C8Wg+mhApfBy8YJAQGJl2C+3AbGAai/1MI1yQnzpEqov9SCqWThcgkgHAHpKEFKFOHsaAMJI2DOsGALWAgFLjBFLEikBFuCE1KCBBInAQRwldvBlLHg/lUBxfBaGVJ7sltN1z0h5JyyoiiisPDMOWU9RlFDyq0rWz3EAeC8sh4d+paVIIqOc8uWukDygFcm34RxMT3Bs9U/5NOHv8GeyuPyd88DHQB4nkVIjRxMWo13N2WsKcuxCNHXkFV7kkgBneK9JyJztWQ1ag4aVNep5nwbjmW86nQ+WbaWrFrFQa2qlvUYYv7KMoy3rIpnoaqhF51GmSzg3afxPO/1XavVQqvVyn2gZ1ixZhgNCiUQhgwZgh9++AEPPvggAMhemvfffx8jRoxQXK5fBk1ISAh69+7ttc1gMCAqKspre2VlJb788ku8/vrrPsu5/fbb0aFDB3kezjPPPIPhw4ejW7duqKysxLJly5Ceno53333X3+sBAPTp0wczZsyoM2TVUERRhNVqhV6vp2G/FSB7ZKq8N00Bx7AYo0rAGFUCCiQLNjiPI0MqxQi+Pf4ccxpETcAIADhATBFBYiUwRQxU32nBWBmovtfAdb0drqsdYA/zkDqKIPGS+44wM2BzWbDHWZBYCWIfAeLQGoaJHWDzObA73Q8QEk5AOopwXWeH6gcN2LzA20xtL0trhDvFgTvF4fJZdV9MhkV2wcaCVJQ4zIjSNH7UZ9nDUuWNofgH7QODAwYEbBtKfeBhyZIlmDRpEg4fPgxBEPDWW2/h0KFD2LVrF3bs2KG43CYJcrFu3ToQQnDzzTf73J+Tk+O1HLW8vBz33HMPCgsLERYWhgEDBuD333/H0KFDFdfhueeewxdffKHoWKvVitTUVAwaNMjrzYXSMKyCex7MwCjey9vSVLRnDbhf6/YE2oiAETlfQBzlcs8QYwAmh4XqWw2YHBaMJ3minYFqkwbO6+0Qh7rA5rNg/1KBzeXAlDKyHFDl4QknIDESmDIWTAnjTspYA6IicF3hkA0kNpsDm8uCEZU9TD1zZk6dymkzsUBckoiFBz7HgYpcWKo8O4dMebhEk9Lo57La3XNgBqZEe3kuKA2D9oHBgdL5MME+h2bkyJHYuXMnXnvtNXTp0gVbtmzBwIEDsWvXLsUjM4Cfc2jaIp6xyppjjf68nUgbXm6OarYqmsNDcz6GvvCN/DcB8TJOakNYd/NnpMDrSVgCcYgL4kUiEEYAF8Bm8OD/VPlt2LQFD42HfzY+AQBYk7MTr2X+iNnJYxChMiBUpcP4dr2g4xo/XxX10JwbNuHqemV89YG++kpK0+DR9Y6L74dRwRwas+DAmD+XX3C/VesOQ9pEcBxH30oCoPacmZbkfMYM0DiGTM2y+L/V4P4mIBEEUhcR4hAXXO0kqDarwVgavqiw9jyY1k6J04wVJ3/F9R2G4IEuE5r8fLXnwFD8g/aBlKZk7NixuPXWW3H99dcjLCys0cpt3WFImwiHw4GsrKw29UBpThwiQZa5cVMftCYYMGDLWPD/qqD6SgtiIHBOt0OKa3gYfo7jEBUV1WbmL6zM+g0swzaLMQO448ZknTbR1AcKoX1gcMBWzaFR8glm+vTpg//+97+Ii4vDddddh40bNzZKrCNq0PhAEAScOXOGhv1WiECAIlvjpj5orbBnWajXa8GUs3BNc0Ds1bA2xXEcQkND2oxBc6AiF+Pa9US4St8s5xNECUWlNpr6QCG0DwwOGIYo/gQzy5YtQ35+Pr799luEhITgjjvuQFxcHO65556AJgVTg8YHBoMBw4cPp2G/FWLgGQyLafzUB60VxsZAtVED9hAP4TInHHda4ZpihzDcCbGLABIqgdR6o3I6ncjKym4zEVrPOkyI1TSea7k+DDoVhvVuR1MfKIT2gcFBW87lxLIsJk6ciI8++ghnzpzBypUr8c8//+Cyyy5TXCadQ0OhNAOMxEC1Qw3pJAepgwgSI0HsIQJDqt6AHQBT7I55w/2rAuNqBT1SAxEkESVOM2KaOUElhdLaUeptCXYPTU0KCwuxbt06rFmzBvv378eQIUMUl0UNGh9YLBYcOnQIvXr1om8oCrAIBIfLRfQM56iXphZsLgc2t3oYiejcy8GlGMlt5PQVIHUSYdgSgg7GDjh9uqDVe2lKnGZIIGinab7VFhabC4ezytGzUzj10iiA9oGUpqSyshJff/01Pv/8c2zfvh2dO3fGLbfcgnXr1qFr166Ky6UGjQ94nkdkZKRXAj9Kw+EZIFLDgNoy9cPYGDA5HNgct5EjRUgQrnTAfo0Vpl3VCQNbM2ed7txEMc1o0PAci8hQDXiOjqorgfaBwYF7+EhJHJomqEwjEhsbi4iICNx444148cUXA/LK1IS2Vh9oNJqArMQLHQ3HoEtI25jM2tywZSxUX2ghXO7A6TF5UJ3Wgi1v3Q/lsw53AsXm9NBo1By6JFw48TcaG9oHBgdtdcjp22+/xfjx470C7DYGrbunbCIkSYLVam0Tb8ctgUQIrAKB1MoDwrUUjJOB6ictNBUaiONdIEHeOdWHnnMHBttZcqzZzilVBdaTpNatu5aC9oHBARvAJ5iZOHFioxszAPXQ+MRisdCw3wFgaebUB20RDatB4pEEHB+WCaGzCO5E671Vh0V2wTXtB+KFI5vQIyQe3YxxTX5OC019EBC0D6Q0NgMHDsSvv/6KiIgIDBgwQE5I6Yu0tDRF52i9vWQTotfrMWDAAOj1zRMzo62h54D+kTz0dNRJMU6nE3kZ+XAMc4DTt/7bdNFFU5BhOo3/7P8ca4feDyOvbdLz6TUc+nePgl5DG6ESaB8YHLSlIadrrrlGztx+zTXXnNegUUrr7ymbAI7jGjUc84UGxzIIa/z0PBcUhBDYbHYQkYC0gbtUx6nxWp+bcfM/yzF552sIVxug59QwcBroODX0nBp6Xg09p4GeU6OTIQZXxvVXfD6OYxFmpI1QKbQPDA4YhckplRg0y5cvx6uvvoqCggL06tULS5cuxejRo+s9bufOnRgzZgx69+6N9PT0c8o9/fTT8t+LFy/2u34NIdiH2loEp9OJU6dOtfrlsi2FUyTIsUhwXqCpDxoDjuMQGRkBzsUBbcTJkKSPxqqBd+LmjiMwJjoFvUI7oJ02FDzDotxlxXFzEXaXHsdX+f/g/w59CUFSnrbA6RKRU2iG00VTHyiB9oHBQXNFCl6/fj0WLFiAJ554Anv37sXo0aNxxRVXICcn57zHVVRU4Pbbb8e4ceP8Ol/nzp1RUlJSZ3t5eTk6d+7sV1k1aQPvfo2P0+lEXl4eoqKioFbTtzx/cUpAnkVCpJqDuo08jJsbjuMQERGBUqEEAt92ws/3Dk1A79CE88p8V7AX/z38FaQA8tE4BQl5RRZEhmmgVtFG6C+0D2wbVFZWen3XaDTysE9N3njjDdx1112YPXs2AGDp0qX4+eefsWLFCixZsuSc5d9777245ZZbwHEcNm7c2OB6ZWdnQxTrvmw4HA7k5eU1uJzaUIPGB0ajEaNGjWrparRajCoGI9vRphUITqcTJ06chHO4Ayx/YT2QOcbtOBaJ8hU2Rp0KI/vGNlaVLjhoHxgcsFA25ORJTtmxY0ev7U8//XSd4R6n04nU1FQ8/vjjXtsnTpyIv/7665zn+PDDD3HixAmsWbMGzz//fIPqtWnTJvnvn3/+2WtYUxRF/Prrr+jUqVODyvIFfepQKMGMAJALy54BWzVZkC77p1zoMIz7o+Q4AMjNzUVoaHU8Jl/emeLiYoiiiNhY7xeA2NhYFBYW+iw/MzMTjz/+OP744w+/gi9ee+21VfVjcMcdd3jtU6lUSE5Oxuuvv97g8mpDDRofWK1WZGRkoEePHnSWvwKsAsGRChEpYRz0NFywItRqFeLi4pDjOgVnhBNSogi4ALgYQACYSgaM1DZ1yyFwD43VLuBIdjlSksOh19Juzl9oHxgcMCwBwyqYFFx1TGhoqJdBc95jallOhBCfK5FEUcQtt9yCZ555Bt27d/erXp64Rp06dcKePXsQHR3t1/H1Qe90H7AsC6PR2CSBfy4EWMY97BTs4beDGUkicDgcICYCkiLB1dHhtZ89wkG1te7bVlvA46EJxKBhWQZGvQosbYSKoH3ghUN0dDQ4jqvjjSkqKqrjtQEAk8mEf//9F3v37sUDDzwAwG2oEELA8zy2bNlSb8bsrKysxruAGlCDxgdarRYXXXRRS1ej1aLlGHQPvcDGSRoZQRBw5kwRsJWF+ncdoCIgKgA8IA5xQUoS4ZroAFxwZ+Z2AYyZBXuIA4PW/RD3zKEJZMhJq+bQPZEuO1bK/7d37/FNVHn/wD8zuTfphUov3O9IgSpQVm4i4KMgKLq4+6zusiuo6wrCDwF1kQcFhAcRdYUVRFFAXEVERbw8y15YlYICKmmLQFtoS0tKaWlLaZt7Msn8/kgzNDSFZKZtJu33/XrlJU5PpiefnE5OZs6cQ8dAeWBF3rYdznPUajUyMjKwf/9+zJgxQ9i+f/9+3HfffU3Kx8XF4cSJEwHbNm/ejG+++QaffvppyGNgrFYrMjMzYTKZmtxNt2DBgpDr3xh1aILwer1wu91QqVT0DUUEL8/D7QVU7JVv2yR8SqUSHMcBTgDORt2UHCXA8uD1PKACeJUXvJYHYgB1sQ6wRbDSLUAYFAzxZ2i8Xh5uzguVkqWzNCLQMVAe2mpivcWLF+MPf/gDRo4ciTFjxuDtt9+GyWTCnDlzAABLly5FWVkZ/va3v4FlWQwdOjTg+cnJydBqtU22Nyc7OxvTpk2DzWaD1WpFYmIiqqurERMTg+TkZNEdGmqpQVitVhw5cgRWqzXSVYlKVg44WsXB2n7uNm5zGo0Gffv2CTqIj72ggOr/tFDv1UL9sRbqnToov24/l59Y4QyN+A6N1cHh6MlKWB3UCMWgY6A8tNU8NA888AA2bNiAVatWYdiwYTh48CD27duHXr16AQDKy8uvOydNOBYtWoTp06ejpqYGOp0OR48exblz55CRkYFXX31V9H7pDE0QOp0ON910E3Q6XaSrEpV0CiC9kwI6uuokmtvtxvnzZXC73WE9z9vDA6aGBbwAc4lp9vITr+DhuYkD1DyYGhbMJRZMrTwGGiuEMTTiLznpNAqk90+EjpY+EIWOgR3PE088gSeeeCLoz3bs2HHN565cuTKs2X9zcnKwZcsWKBQKKBQKOJ1O9O3bFy+//DJmzZqF+++/P4yaX0EdmiCUSiUSExMjXY2opWQZJGoi/8EYzfyrHYeKsfjG0XCTA69Fs8UsmIsKsBdZMBdZME4Gnt4ecLe5AAMPOADoGwp74OvU+Ds4NQzYKhZMfdueyGVb4C4npYJFYlz7OWvV1ugYKA9Sb9uWK5VKJdxBlZKSApPJhLS0NMTHx0s6E0QdmiBcLhcqKyuRnJxMs2SK4PLyqHLwSNIyUNP4BVEUCgViYw0wmy1BZ9S8GlvNQr1FB+gAPs4Lz2AOUAC8jod3mBse/1qQFgYw8GBMLJRfasDWsuC1PPhEL/gbvPAm8r7/dncDDV/O2QIFlAfVYGxt814qhHloxHdoXG4Pqi47kNRJSzMFi0DHQHlgWR6siNu2xTynLQ0fPhzHjh3DwIEDMWnSJCxfvhzV1dV4//33kZ6eLnq/1KEJwuVy4ezZs0hISKA/ZhFcHuCs2Yt4lQJqGqUlilKpQFJSZ9jt9pA6NADA8AxgAxibAmzFlQ9xHjwQz8Ob4gWf5AVTwYItunI3FONgwFxQABcUwrJRPHyDjL09PeDGueD6vR3KwyqwJ5WtfhcVK8wULGHpA7cXZy+YEW9QU4dGBDoGykN7Wm27sRdffBFmsxkAsHr1asyaNQtz585F//798e6774reL3VogjAYDLjtttsiXY2oZVAxGJ9CTUsKp9OFgoKiFtkXAwaoY6CoY4EzYTzHBijylWCLFeDGucBNcoMZ5IHyWzXYS63XUxXO0Ei4y8kQo8L4YaktVaUOh46B8tBeLzmNHDlS+HdSUhL27dvXIvul78+EkGtinAxU32ig2qMBNDzcDzjAjXGBV7bOt8CWWMuJENLx0NfoIGw2G86cOYOBAwfStN8i2DgeBfUeDIijpQ/EUqlUSElJxsWLlWHf6dRa2AsKqHZp4RnBwfMLNzwDPFAdUIM1tewlHbYFJtazOTgUmOowoGc8LX0gAh0D5UHq0gdyMnz48KBLKQSTlZUl6nfQX3oQDMNAo9GEHD4JxABQK6J9vtpI432T6kFeBybGy0B5TAW2UAFuogvu+5xgTyugPKQGY2+Zd9y/lhMn4QwNwwBqtUL2p97lio6B8tCextD4F6ZsTdShCUKn0yEtLS3S1YhaOiWDtHgaiCmF282houJipKvRLLaWhepzDbyDPOBudcE12+4bbFymAHu+4RZxj7gPQ7YF7nLSaZRI650g+vkdHR0D5aE9jaFZsWJFq/8O6tAEwfO+b8dKpZK+oYjA8zw4HlAyTVdwJaFjWVZYnVaOGDC+QcMlCnhu5MB398JzsxueUfCtCF7Bgi1jUeu2IUEV+mWLlljLied5cB4eSgVDbVAEOgaS1lZbW4tPP/0URUVFeOaZZ5CYmIisrCykpKSgW7duovZJg4KDsFgs+P7772GxWCJdlahk4YDDlRwsNOu8aBqNBv379wu69IHcMA4GyuMqqP6ugfodHVS7tFAcVvkm8RvO4ZkTu8Ia4Custi3hLieLncPhny/CYqdGKAYdA2WiYQxNuA/IcAxNYz///DMGDhyIdevW4dVXX0VtbS0AYO/evVi6dKno/VKHJgitVoshQ4ZAq9VevzBpQqsABicooKWrTqK53W5cuHBBNgOCQ8WAAVvN+jo4+zRQ/V2Dny4X471z34W8D/8ZmrfOfiP6spNWrcDgvp2gVVMjFIOOgfLQVms5tbXFixdj9uzZKCgoCGhjU6dOxcGDB0Xvlzo0QahUKiQlJUGlUkW6KlFJxTJI0rJQ0SzBonm9XlgsVllfcgoFe16BWT1vxRtn/wMb5wzpOcmaOPTQJeJYbTEuOGpF/V6VkkVSghYqJR3ixKBjoDwwDMCwIh4yP/T+9NNPePzxx5ts79atGyoqKkTvl/7ag3C73SgvL4+6b8dy4fbyKLd54fbK+1uCnCkULOLj46BQRP+f6NgbBoDjPahxh7Zys5pVYvXgXwMAXF5xl4zcnBfl1Ta4uejuEEYKHQNJa9Jqtaivr2+y/fTp00hKShK93+g/WrYCh8OB06dPw+FwRLoqUcnhAc7Ue+AIbcZ+EoRSqUJKSgqUyuj/hhyn8i0KVesOfbFNNeu7VOQU2aFxuDw4Y6qDw0WNUAw6BsqDqLMzDQ85u++++7Bq1Sqhw8wwDEwmE5599ln86le/Er1fmb/syIiNjcXEiRMRGxsb6apEpVgVgwmpKsSqZH7eU8acTifOnCmA0xnaZRo566JNgJZVYXnuHuSZL4T0HDXr68i5RXZoYmNUmDCiC2Jjor9DGAl0DJSH9jqG5tVXX0VVVRWSk5Nht9sxYcIE9O/fH7GxsVizZo3o/dJt24SQVpWgisEHv5iDZac+we9/ehOP97kdj/S6DUq2+QG7lU7f6WgpC1QSEu3Enm2R+xmauLg4fPfdd/jmm2+QlZUFr9eLESNG4I477pC0X+rQBGG321FQUIABAwZAp9NFujpRx87xKDR70T+WhY6WPhBFpVIhOTkJlZVV7WIcwwBDKnb+Yi7eKv4Gb579Gv+pPIlxNwzEoNiuGBTbBXaPCyvz9uKMpQJqVgm314Ph8b0wNE7cfBR2J4fC0nr07xEHnYYOc+GiYyBpLRzHQavVIicnB7fffjtuv/32Fts3/aU3g2VD6+KyM5a0ck2iD2u3Q1FUBLZfP7AROBgeawfvid1uR1FREfr16xf1Hyge7zEAvoPN/O6zcdug8dh+8v/wf1UnsP3clVs0+yd0wzO/+B04rwcsGNzTbxyU6hhRiz/wdjcYmxJ8ahJ4HV12EiPUYyBpRWLnlJHxPDRKpRK9evWCx9Py49sYnu/Y53Tr6+sRHx+Puro6xMXFRbo6hLQ7/g5NMDWOeuTXmHDZUY87e/0CagV1Plqbgh0p6nl0rGw7/qzLZv0GcWp1+M93udDtvY9l+169++67+OSTT/DBBx8gMTGxxfZLZ2iC4HkePM+DYWjadDEoP+k6SoaJ2jiM7Tq0xffbUfJrLZSfPLTXMTSvv/46CgsL0bVrV/Tq1Qt6vT7g57TadguyWCwwGo3IyMigUf4iUH7SUYbSWCxOZGWZMGJET8TG0my34aL2R1pTa628TR2aILRaLdLS0mjab5EoP+koQ2m0WhUGDUqFVkuXsMSg9icTLMRNriLzMzSttfI2dWiCUKl8k5oRcSg/6ShDaVQqBVJS5Dd2IFpQ+5OH9nrJKRT+S57haAcvu+W53W5cvHixXdwuGwmUn3SUoTRutweVF+vhdtNMwWJQ+5MHhhH/kJu0tDR8+OGHcLlc1yxXUFCAuXPnYt26dWH/DurQBOFwOJCXl0fTfotE+UlHGUrjcLiRl18Bh4M+kMWg9icTDK5cdgrnIcMOzRtvvIH169cjJSUFDzzwAF555RXs3LkTe/bswdatW7F48WLccsstGD58OOLj4/HEE0+E/Tvotu0gtyLyPA+v1wuWZWmEvwiUn3TtKcNr3bbdWnz58WBZukvnaqHcth2s/dFt223Hn3XF479BnEbEbdtOF1K3yPO27cOHD2P37t04ePAgSkpKYLfb0blzZwwfPhxTpkzB73//eyQkJIjad5ufoVm7di0YhsHChQuFbf5bA69+vPLKK0KZ06dPY9y4cejevTtWrVoVsM/evXuDYRgcPXo0YPvChQsxceLEsOvIMAwUCgUdCEWi/KSjDKXx5Rf9ncFIofYnD+1xccqxY8fir3/9K7Kzs3H58mU4HA6cP38eX331FebPny+6MwO0cYfmp59+wttvv42bbropYHt5eXnAY/v27WAYJmDVzXnz5uEPf/gDvvjiC3z11Vf4/vvvA/ah1WqxZEnLzBBrt9tx6tQp2O32FtlfR0P5SUcZSmO3u5F76gLsdrrkJAa1P5kQc7lJ7J1R7UCbvWyLxYKZM2finXfeQadOnQJ+lpqaGvD44osvMGnSJPTt21coU1tbi+HDh+Omm25C165dUVdXF7CPxx9/HEePHsW+ffsk15XneXAchw5+NU40yk86ylAanufBebyUn0jU/uShPZ6haU1t9rLnzZuHu++++7qraV68eBF///vf8eijjwZsX7VqFe68807ExMSAZVlMmTIl4Oe9e/fGnDlzsHTpUni9Xkl1jYmJwc0334yYmBhJ++moKD/pKENpYmLUuOmm7oiJCX/8AaH2R6JTm3RoPvroI2RlZWHt2rXXLfvee+8hNjYW999/f8D2adOmoaqqChcuXMDevXuhUCiaPPe5555DcXExdu7c2WJ1J4QQQiKCLjmFpdVfdmlpKZ588kl88MEHIc06uX37dsycOTNoWY1Gg6SkpGafm5SUhKeffhrLly+/7r3uV7NYLMK/L168iK+//hpmsxlerxdmsxkcxwEAXC5XQFmbzSbc2hisrNlsDijrvybN8zzMZrMwz4Pb7YbZbBZO8drt9rDK2mw24feYzWbh9XMcJ7wOwHc7ZuOyFovlmmWtVmtAWafTCQDweDwwm83CiqlOp1MoazabsX//flRXVzdbtnGGVqv1mhm2dd7+1xBq3tfLsLmy/lz8ZYNleOnSpevm7c/Q/974c/GXDTfDq8teL0O/a7dZD8xmR6MM3bDZrvyNms0OuFxcQ4a+sl4v35BhYFmLJVhZr1DWanXCbHbg4MECVFTUwenkGjL0wmx2wOPx5+0reyVDJ5xOdzNlOVgsgWX9t4T7MnSA4/x5c7BYrtzubLO5GpXlm5Q1mwPL+sf9+DJ0CHPpNM3QBbvdFWLZq/O+9jGisrISmZmZMJvNAW2WtC2GZUQ/OqJW79AYjUZUVlYiIyMDSqUSSqUSmZmZeP3116FUKgOWED906BBOnz6NP/7xj6J/3+LFi2G327F58+awnpebmyv8u7i4GAaDARqNBk6nE0ajUTjIV1RUICcnRyibn5+Pc+fOAfAd4I1GozC+p6qqKmCRrYKCAhQXFwPwfUAZjUZcvnwZAHDp0iUYjUahbGFhIQoLC4X/NxqNwofb5cuXYTQaheyKi4tRUFAglM3KykJVVRUAoK6uDkajUfhgOXfuHPLz84WyOTk5qKioAHBl/Rb/B2NpaWlALidOnEB5eTkA3weo0WgUPsDKyspw8uRJAL6OJ8/zQofG4XA0yfDnn38W9puXlweTyQTA94FqNBqFD8qLFy8iOztbKHv69GmUlJQA8B2IjUYjamtrAQDV1dVN8j579iwA34eO0WhETU0NAKCmpgZGo1E44BcVFQVkaDQahfrX1tbCaDQKH/olJSU4c+ZMQN6VlZUAfLdbXp13Xl6eUPb48eNChv68/Z2L0tJSnDp1SsjQ6/UK77nNZoPRaBQ6RxcuXMCJEyeE/Z46dQqlpaVB8y4vL8fx48cD8r66zdbX1wMAKisrAzI8c+bMNfNu3GYLCgpQVFQEwPcB2zjvyzVWZGWZhE5K8dkqFBZWCs/Nzi5FdbWvvnW1dmRlmYQP/XMll3DmzMUrGeacR2Wlr32Yzb41m1wuT0OGNcjPr4BGo0T//kkoLKhERUVdQ96+sv7Oxfnztcg9daFRhhdQVuYra7e7kZVlgtXqasiwDidPlgll8/MqcP6872/X6eSQlWUSOjwXL9bj5+NXyp4+XQHTuZqGvD3IyjKhrs73d1NVZUFOdqlQtrCgEiXF/i8CXmRlmVB72feeX7pkQVaWSShbVFSFoqIq4f+zsky4dMmXYe1lG7KyTEKHrKS4GoUFlY3KXvsYUVJSggEDBkCj0QQcI0gbYyQ8ooTdbkd9fX3AQ6xWn4fGbDYLB0+/hx9+GIMGDcKSJUswdOiVlXZnz56NkydP4tix8Oat6N27NxYuXCjcCv7GG29g5cqVmD59Os6ePYsDBw40+1xhmfayMnTt2hWA78NaoVBAq9XC6/XCarVCp9NBqVTC5XLB5XLBYDAA8H3QsCzbbFmn0yks7maz2cAwDHQ6HXieh8VigVarhUqlgtvthsPhgMFgAMMwQkch1LI8zwvXu81mMzQaDdRqNTiOg91uh16vB8uycDh832b9ZS0WC9RqdbNlPR6PsBKqxWKBSqWCRqOBx+OBzWZDTEwMFAoFnE4nOI4TylqtViiVymbLut1uIUO55e3PMNS8r5dhc3n7c/GXDTfD5sr6c/GXDTfDq8teL0N/3s21WVZxHG63Bw6HGwaDpiFDd0OG6oa8HdBolFCrleA4D+x2N/R6DViWgcPhhtd7pazF4oBafXVZdUPebng8Xuj1moayTqhUCmg0Sng8XthsLsTEqKFQsHA63eC4K2WtVieUShYajSpIWQ5utwcGw5WyCgULrVbVkKELOp0KSqUCLhcHl4uDwaBtyNAFlmUayvKwWp0BZZ1OTlhA02ZzNeStasjQCa1WBZVKESRDV0Pe6hDKXslbwY4UdYxwOBw0D00b8X8uVS1+QPQ8NEmv7Zbte2Wz2fDnP/8ZH3/8sfClrbHGJzrCEZGJ9SZOnIhhw4Zhw4YNwrb6+np06dIFf/nLXzBnzpyw9nd1h8btdiMtLQ1lZWUYNWpUSB2axm88x3Gora1FQkIClEpa7ipclJ907SnDSEysx3Ee1NXaEZ+gg1LZdLxdRxbKxHrB2h9NrNd2hA7N0xI6NK/Kt0Mzb948fPvtt1i1ahUeeughvPHGGygrK8OWLVvw0ksvYebMmaL2K5uhQx999BF4nsdvf/tbyftSqVRYvXq16Gm77XY7Tp48SXMwiET5SUcZSmO3u3GS5qERjdqfPLTXMTRfffUVNm/ejF//+tdQKpUYP348nnvuObz44ouSbuqhpQ+CfOvwer3gOA5KpRIsK5s+X9Sg/KRrTxlG4gyN18uD4zxQKhVgZX5wb2uhnKEJ1v7oDE3b8Wdd/eyDos/QdH7pI9m+VwaDAadOnUKvXr3QvXt3fPbZZ7jllltQXFyM9PT0gBsTwhHdR8pWwrIs1Gp11H+QRArlJx1lKA3LMlCrldSZEYnaH2lNffv2FW42GDx4MD7++GMAvjM3UbP0QbRwOBzIz8+nlWZFovykowylcTjcOE2rbYtG7U8mGAZgRTxkvgbXww8/LNx5uXTpUmzevBkajQaLFi3CM888I3q/0T3asJV4vV7Y7XbJMw53VJSfdJShNF4vD3vD3VEkfNT+5EHsMgZyX/pg0aJFwr8nTZqE/Px8HDt2DP369cPNN98ser/UoQkiJiYGw4cPj3Q1ohblJx1lKE1MjBrDhvWIdDWiFrU/mfCfcRHzvCjhcDjQs2dP9OzZU/K+ZN6PI4QQQkh74vF4sHr1anTr1g0Gg0GYAPX555/Htm3bRO+XOjRBWCwWHDp0SPRI646O8pOOMpTGYnHg++8KA5YgIKGj9icTYsbPiD2r04bWrFmDHTt24OWXX4ZafeUurvT0dGzdulX0fqlDE4RarUbv3r0Dgiaho/ykowylUauV6NX7BqjVdFVdDGp/8uAfQyPmIWd/+9vf8Pbbb2PmzJkBC03fdNNNAUvzhIv+2oNQq9Xo0YOuv4tF+UlHGUqjVivRvXunSFcjalH7kwlG5B1LMr/LqaysDP3792+y3ev1CmuKiSHzflxkcByHy5cvC4sRkvBQftJRhtJwnAeXL9uEBS5JeKj9yUQ7veQ0ZMgQHDp0qMn2Tz75RNJgdOrQBGG323H8+HGa9lskyk86ylAau92Nn38+T0sfiETtj7SmFStWYP78+Vi3bh28Xi8+++wzPPbYY3jxxRexfPly0fulDk0Qer0eo0ePFlYyJuGh/KSjDKXR69UYNaoP9HoaAyIGtT+ZaKdnaKZPn47du3dj3759YBgGy5cvR15eHr766ivceeedovdLY2iCYFkWWq020tWIWpSfdJShNL786PuaWNT+ZKIdzkPDcRzWrFmDRx55BJmZmS26b/qLD8LhcODMmTM07bdIlJ90lKE0DocbBQUXaekDkaj9yQPDiFxtW8aDgpVKJV555RV4PC0/vo06NEF4PB7U19e3SuAdAeUnHWUojcfjRX29Ax4PTd0vBrU/0pruuOMOHDhwoMX3S5ecgtDr9Rg5cmSkqxG1KD/pKENp9HoNMjJ6RboaUYvan0y0w0tOADB16lQsXboUJ0+eREZGRpOxWvfee6+o/VKHhhBCCJGjdtqhmTt3LgDgtddea/IzhmFEnxmkS05BWCwWHD58mKb9Fonyk44ylMZiceLIkSJYLM5IVyUqUfuTiXZ6l5PX6232IeUyJ3VoglCpVOjWrRtUKlWkqxKVKD/pKENpVCoFunZNgEqluH5h0gS1PxKN6JJTEBqNBr160fV3sSg/6ShDaTQaJXr1uiHS1Yha1P5kop1ecgIAq9WKzMxMmEwmuFyugJ8tWLBA1D6pQxOEx+OBxWKBwWAIWDiLhIbyk44ylMbj8cJiccJg0EChoBPR4aL2JxNtuJbT5s2b8corr6C8vBxDhgzBhg0bMH78+KBlP/vsM7z55pvIycmB0+nEkCFDsHLlSkyZMiWk35WdnY1p06bBZrPBarUiMTER1dXViImJQXJysugODf2lB2Gz2ZCdnQ2bzRbpqkQlyk86ylAam82FnJxS2Gyu6xcmTVD7kwdRc9A0PMKxe/duLFy4EMuWLUN2djbGjx+PqVOnwmQyBS1/8OBB3Hnnndi3bx+MRiMmTZqE6dOnIzs7O6Tft2jRIkyfPh01NTXQ6XQ4evQozp07h4yMDLz66qth1b0xhud5XvSz24H6+nrEx8ejrq4OcXFxAHzfThwOB7RaLX07EYHyk649ZejxHmv73+nxwuFwQ6tV0RmaqyjY69+OHaz9BTtWktbhz7p2058Qpwt/+Y56uwsJ898O+b0aNWoURowYgTfffFPYlpaWhl/+8pdYu3ZtSL9zyJAheOCBB0JaiykhIQE//PADbrzxRiQkJODIkSNIS0vDDz/8gFmzZiE/Pz+k33k1+ksPQqFQQK/XR/0HSaRQftJRhtIoFCz0errcJBa1P5mQeJdTfX19wMPpbHrXn8vlgtFoxOTJkwO2T548GYcPHw6pml6vF2azGYmJiSGVV6lUwmzGKSkpwpmg+Pj4Zs8KhYL+2oNwOp0oKioK+uaT66P8pKMMpXE63SgqqoLTSUsfiEHtTyZYiOzQ+J7eo0cPxMfHC49gZ1uqq6vh8XiQkpISsD0lJQUVFRUhVfMvf/kLrFYrfvOb34RUfvjw4Th2zHfmdtKkSVi+fDl27tyJhQsXIj09PaR9BEMdmiA4jkN1dTU4jot0VaIS5ScdZSgNx3lRc8kCjqOlD8Sg9icTEs/QlJaWoq6uTngsXbq02V919fpPPM+HtCbUrl27sHLlSuzevRvJyckhvawXX3wRXbp0AQCsXr0aN9xwA+bOnYvKykq8/fbbIe0jGLrLKQi9Xo9Ro0ZFuhpRi/KTjjKURq/X4Be39Il0NaIWtb/2IS4u7rpjaDp37gyFQtHkbExlZWWTszZX2717Nx599FF88sknuOOOO0KuV+NlNZKSkrBv376Qn3stdIaGEEIIkSOGBVgRDyb0j3a1Wo2MjAzs378/YPv+/fsxduzYZp+3a9cuzJ49Gx9++CHuvvtu0S+xJVGHJgir1YoffvgBVqs10lWJSpSfdJShNFarEz/+WAyrlcaAiEHtTybaaOmDxYsXY+vWrdi+fTvy8vKwaNEimEwmzJkzBwCwdOlSPPTQQ0L5Xbt24aGHHsJf/vIXjB49GhUVFaioqEBdXV2Lvvxw0SWnIJRKJZKSkqBUUjxiUH7SUYbSKJUsOneOhVJJ39nEoPYnE200U/ADDzyAS5cuYdWqVSgvL8fQoUOxb98+Ybbo8vLygLuPtmzZAo7jMG/ePMybN0/YPmvWLOzYsSP8+rYQmoeG5lYgpFVFYh4a0rxQ5qEJho6VbUeYh2bH/0NcjCb859ucSJi9scO9V/T1JQj/tN9SVv3syCg/6ShDafxLH3g8dJeTGNT+SDSiDk0QNpsNx44do2m/RaL8pKMMpbHZXDAaz9HSByJR+5MJMQOC/Q+Z+/rrr3HPPfegX79+6N+/P+655x785z//kbRP+b/qCIiJicGIESMQExMT6apEJcpPOspQmpgYNYYP74mYmPCnjSfU/mSjjQYFt7VNmzbhrrvuQmxsLJ588kksWLAAcXFxmDZtGjZt2iR6vzTiKwiFQtGhrju2NMpPOspQGoWCRVycNtLViFrU/mSijQYFt7W1a9di/fr1mD9/vrBtwYIFGDduHNasWROwPRx0hiYIp9OJkpISmvZbJMpPOspQGqeTQ0nJJTidNNOtGNT+SGuqr6/HXXfd1WT75MmTUV9fL3q/1KEJwu12o7y8HG43rQMjBuUnHWUojdvtQUVFHdxuGtQqBrU/mWinY2juvfde7N27t8n2L774AtOnTxe9X7rkFITBYMCYMWMiXY2oRflJRxlKYzBoMHp030hXI2pR+5OJdnrJKS0tDWvWrMGBAweEdnb06FF8//33eOqpp/D6668LZRcsWBDyfqlDQwghhMhRO+3QbNu2DZ06dUJubi5yc3OF7QkJCdi2bZvw/wzDUIdGKqvVitzcXAwePBh6vT7S1Yk6lJ90lKE0VqsT+XkVGJSWCr0+/InJOjpqf6Q1FRcXt8p+qUMThEKhQEJCAhQKRaSrEpUoP+koQ2kUChbxCTooFPIeSyBX1P7kIryFJgOe1wFRhyYIrVaLAQMGRLoaUYvyk44ylEarVaF//+RIVyNqUfuTiXZ6yQkAzp8/jy+//BImkwkuV+AEmK+99pqofVKHJgiv1wun0wmNRgNW5qPF5Yjyk44ylMaXHweNRkn5iUDtTyZYRtwdSzLv0Hz99de499570adPH5w+fRpDhw5FSUkJeJ7HiBEjRO+XWmoQVqsVP/zwA6xWa6SrEpUoP+koQ2msVhd+/LEEVistfSAGtT/SmpYuXYqnnnoKJ0+ehFarxZ49e1BaWooJEybgv//7v0Xvlzo0Qeh0OgwbNgw6nS7SVYlKlJ90lKE0Op0KN9/cHTqdKtJViUrU/mSinS59kJeXh1mzZgEAlEol7HY7DAYDVq1ahXXr1oneL3VoglAqlUhISIBSSVfkxKD8pKMMpVEqFUhIiIFSSYNaxaD2JxPtdGI9vV4vzELdtWtXFBUVCT+rrq4WvV95v+oIcblcQQcqkdBQftJRhtK4XBxKS2vgctHSB2JQ+5OJdnqGZvTo0fj+++8BAHfffTeeeuoprFmzBo888ghGjx4ter/UoQmC/pilofykowylcbk4lJouU4dGJGp/pDW99tprGDVqFABg5cqVuPPOO7F792706tUrYGK9cDE8z/MtVcloVF9fj/j4eNTV1dHqsoS0Ao/3WKSrQBpRsCNFPY+OlW3Hn3XtP1YgTh/+qvH1VgcSpr7Q4d4rukBKCCGEyFE7noemNUi65LR27VowDIOFCxcGbM/Ly8O9996L+Ph4xMbGYvTo0TCZTM3uZ8eOHWAYpsnD4XAIZSwWCx588EF06dIFDz74YMDthLNnzwbDMHjppZcC9vv555+DYcJ/Y202G7KysmCz2cJ+LqH8WgJlKI3N5kJ2tgk2G10yEYPan0y0o0HBnTp1QmJiYkgPsUSfofnpp5/w9ttv46abbgrYXlRUhFtvvRWPPvooXnjhBcTHxyMvLw9a7bVPm8XFxeH06dMB2xo/Z8OGDTAYDPj3v/+N9evXY8OGDVi2bFlA2XXr1uHxxx9Hp06dxL4sAADLstDr9TShlEiUn3SUoTQsy0AfowHbQb+pSkXtTybEdk5k+L5t2LCh1X+HqA6NxWLBzJkz8c477+B///d/A362bNkyTJs2DS+//LKwrW/fvtfdJ8MwSE1NbfbntbW1GDhwINLT0zFo0KAmt3bdcccdKCwsxNq1awN+txharRY33nijpH10ZJSfdJShNFqtCgNvTIl0NaIWtT/S0vzzznAch507d2LKlCnX/MwXQ1Q3bt68ebj77rtxxx13BGz3er34+9//joEDB2LKlClITk7GqFGj8Pnnn193nxaLBb169UL37t1xzz33IDs7O+Dn8+fPx5YtW6BSqfDuu+/iySefDPi5QqHAiy++iI0bN+L8+fNiXlbA63A6nfB6vZL201FRftJRhtJ4vTycTg5eb4e+50E0an8ywYi8ZVvEUIu2olQqMXfuXGEempYUdofmo48+QlZWFtauXdvkZ5WVlbBYLHjppZdw11134d///jdmzJiB+++/H5mZmc3uc9CgQdixYwe+/PJL7Nq1C1qtFuPGjUNBQYFQpnfv3igoKEBpaSlyc3PRrVu3JvuZMWMGhg0bhhUrVoT7smCxWIR/V1VV4dChQ7BarfB6vTCbzeA43+2fLpcroKzNZhPG+gQrazabA8ra7XYAAM/zMJvNcLvdAAC32w2z2Qz/TWd2uz2sso2vdZvNZuF2S47jYDabhQOTw+EIKGuxWK5ZtvFYJYvFIjRCj8cDs9kMj8cDAHA6nUJZq9WKzMxM1NTUNFu2cYZWq/WaGbZ13v4MQ837ehk2V9afi79ssAwvX7583bz95f3vjT8Xf9lwM7y67PUy9Lt2m/XAbHY0ytAdML7FbHYIt1hznK+svzPicASWtViClfUKZa1WJ6xWJ44ePYvKyno4nVxDhl6YzQ54PP68fWWvZOiE0+lupiwHiyWwrMPhbpShAxznz5uDxXJl/J/N5mpUlm9S1mwOLGu3uxtl6IDb7WkmQxfsdleIZa/O+9rHiOrqahw5cgRWqzWgzZI21o7G0DQ2atSoJictWkJYr7q0tBRPPvkkPvjgg6BjYvx/EPfddx8WLVqEYcOG4dlnn8U999yDt956q9n9jh49Gr///e9x8803Y/z48fj4448xcOBAbNy4MbCyLIvU1NRrDvRdt24d3nvvPeTm5obz0gLKl5SUIDExETqdDk6nE0ajUTjIV1RUICcnRyibn5+Pc+fOAfAd4I1GI+rq6gD4OkZZWVlC2YKCAhQXFwPwfUAZjUbhA+vSpUswGo1C2cLCQhQWFgr/bzQacenSJQDA5cuXYTQahQ+s4uLigM5fVlYWqqqqAAB1dXUwGo3CB8u5c+eQn58vlM3JyUFFRQUA34et0WgUPhj9nUe/EydOoLy8HIDvA9RoNAofYGVlZTh58iQA37TpSqVS6NA4HI4mGf7888/CfvPy8oRB4y6XC0ajUfigvHjxYkDDP336NEpKSgD4DsRGoxG1tbUAfDNMXp332bNnAfjaptFoFOpUU1MDo9EoHPCLiooCMjQajcJlzdraWhiNRuFDv6SkBGfOnAnIu7KyEoDvdsur887LyxPKHj9+XMjQn7e/c1FaWopTp04JGSoUCqF92Gw2GI1GoXN04cIFnDhxQtjvqVOnUFpaGjTv8vJyHD9+PCDvq9tsfX09AN+XksYZnjlz5pp5N26zBQUFwoyfPM8H5H25xoqsLJPQSSk+W4XCwkrhudnZpaiu9tW3rtaOrCyT8KF/ruQSzpy5eCXDnPOorPS1D7PZiawsE1wuT0OGNcjPr4BOp8LQoV1RVFSFioq6hrx9Zf2di/Pna5F76kKjDC+grMxX1m53IyvLJKwFVV5eh5Mny4Sy+XkVOH/e9944nRyyskxCh+fixXr8fPxK2dOnK2A6V9OQtwdZWSbU1fn+bqqqLMjJLhXKFhZUoqTY1+48Hi+yskyovex7zy9dsiAr68rNFUVFVSgqqhL+PyvLhEuXfBnWXrYhK8skdMhKiqtRWFDZqOy1jxHnzp1Deno6dDpdwDGCtDGGEf+QsSeeeAJPPfUUNm3ahCNHjuDnn38OeIgV1jw0n3/+OWbMmAGF4sp04h6PBwzDgGVZWK1WGAwGrFixAs8995xQZsmSJfjuu++EmQFD8dhjj+H8+fP4xz/+cd2ys2fPRm1trXBp6+6774ZKpcLs2bMxY8YMXOsl+u/3LysrQ9euXQH4PqwVCgW0Wi28Xi+sVqvwIe1yueByuWAwGAD4PmhYlm22rNPpRGxsrFCWYRjodDrwPA+LxQKtVguVSgW32w2HwwGDwQCGYYSOQqhleZ5HTEwMAN+3L41GA7VaDY7jYLfbhQF+Dofv26y/rMVigVqtbrasx+OBXq8XyqpUKmg0Gng8HthsNsTExEChUMDpdILjOKGs1WqFUqlstqzb7RYylFve/gxDzft6GTaXtz8Xf9lwM2yurD8Xf9lwM7y67PUy9OfdXJtlFcfhdnvgcLhhMGgaMnQ3ZKhuyNsBjUYJtVoJjvPAbndDr/cN6nU43PB6r5S1WBxQq68uq27I2w2Pxwu9XtNQ1gmVSgGNRgmPxwubzYWYGDUUChZOpxscd6Ws1eqEUslCo1EFKcvB7fbAYLhSVqFgodWqGjJ0QadTQalUwOXi4HJxMBi0DRm6wLJMQ1keVqszoKzTySE29kpZX96qhgyd0GpVUKkUQTJ0NeStDqHslbwV7EhRxwiHw0Hz0LQRYR6azJcQZxAxD43FgYQJz8r2vQo22JxhGPA8D4ZhhC/r4QqrQ2M2m4Vvdn4PP/wwBg0ahCVLlmDo0KEYO3Ys+vXrh/fff18oM2PGDOh0Onz44Ych/R6e53HLLbcgPT0d27dvv275qzs0J06cwLBhw/DUU0/hlVdeCalD0/iNd7lcqKqqQlJSEtRqdUh1JldQftK1pwwjMbGey8WhqsqCpCQD1GqabquxUCbWC9b+aGK9tiN0aA6tQ5wh/AVC6y12JIxfItv36up+xNV69eolar9h/aXHxsZi6NChAdv0ej1uuOEGYfszzzyDBx54ALfddhsmTZqEf/7zn/jqq69w4MAB4TkPPfQQunXrJozDeeGFFzB69GgMGDAA9fX1eP3115GTk4M33nhD1ItKT0/HzJkzm1yyCpXT6URhYSHi4uKi/sMkEig/6ShDaZxODmeLqhAXp6UOjQjU/mSiHd223ZjYDsv1tPirnjFjBt566y28/PLLSE9Px9atW7Fnzx7ceuutQhmTySSMIwB8YxT+9Kc/IS0tDZMnT0ZZWRkOHjyIW265RXQ9Vq9efc0zM9cSGxuLCRMmCKfSSXgoP+koQ2liY7UYf9sA4VIOCQ+1P5lop4tTAsD777+PcePGoWvXrsIZmw0bNuCLL74QvU9ay4lOoxLSqmgtJ3mhtZzkT7jkdORV8Zecxjwt2/fqzTffxPLly7Fw4UKsWbMGJ0+eRN++fbFjxw689957+Pbbb0XtV97npSLEZrPh+PHjNO23SJSfdJShNDabCz8fP09LH4hE7U8m2ult2xs3bsQ777yDZcuWBdxkNHLkyIC7N8NFF5eDYBgGKpVK1DpQhPJrCZShNL78FJSfSNT+ZKKdjqEpLi7G8OHDm2zXaDQB82uFizo0Qeh0OgwePDjS1YhalJ90lKE0Op0KaYO7RLoaUYvan0yInVNG5h3RPn36ICcnp8ng4H/84x+S2h11aILgeR4ejwcKBX3DE4Pyk44ylMaXnxcKBUv5iUDtj7SmZ555BvPmzYPD4ZvN+scff8SuXbuwdu1abN26VfR+qUMThH8G14yMDBrlLwLlJx1lKI1/VuARI3rSnU4iUPuTB55lwYu4fCTmOW3p4YcfBsdx+POf/wybzYbf/e536NatG/7617/iwQcfFL1f6tAEodVqMXjw4KDLO5Dro/ykowyl0WpVGJzWBVqtKtJViUrU/mSCETmGhpF3hwbwrQbw2GOPobq6Gl6vF8nJyZL3Kf9XHQEqlQrJyclQqehgKAblJx1lKI1KpUBScixUKsX1C5MmqP3JRDu9y+mFF14Q1n3r3Llzi3RmAOrQBOV2u1FRUSEs1kbCQ/lJRxlK43Z7UFFRJ6w+TcJD7Y+0pj179mDgwIEYPXo0Nm3aJCyUKhV1aIJwOBzIz88XVkEm4aH8pKMMpXE43Dh9+qKwsjYJD7U/mWinMwX7V9W+/fbb8dprr6Fbt26YNm0aPvzwQ0lzH9FMwUFmv2wcCY3wDx/lJ117yjASMwW3p/xaWigzBQfLj2YKbjv+rC+fehtxsSJmCjbb0WnIn6Lmvfr+++/x4Ycf4pNPPoHD4UB9fb2o/dCg4CDoACgN5ScdZSgN5ScN5ScTDCNugG+UvX96vR46nQ5qtRpms1n0fuiSUxB2ux0nTpyA3W6PdFWiEuUnHWUojd3uwsmTZbDbaekDMaj9yUQ7HRQM+GYLXrNmDQYPHoyRI0ciKysLK1euREVFheh90hkaQgghhLSZMWPG4Mcff0R6ejoefvhhYR4aqahDE4ROp0N6enqkqxG1KD/pKENpdDo1hg6VfoDsqKj9yUQ7Xctp0qRJ2Lp1K4YMGdKi+6UOTRA0oFAayk86ylAayk8ayk8mxN6xJPO7nF588UUAQHV1NRiGwQ033NAi+5V3Ny5CLBYLMjMzYbFYIl2VqET5SUcZSmOxOHHwYAEsFmekqxKVqP3JRDscQ1NbW4t58+ahc+fOSElJQXJyMjp37oz58+ejtrZW0r7pDE0QWq0WgwYNomm/RaL8pKMMpdFqVbjxxhRa+kAkan+kNdTU1GDMmDEoKyvDzJkzkZaWBp7nkZeXhx07duDrr7/G4cOH0alTJ1H7pw5NECqVCqmpqZGuRtSi/KSjDKVRqRRITY2PdDWiFrU/eeAZFryI27bFPKctrFq1Cmq1GkVFRUhJSWnys8mTJ2PVqlVYv369qP3L81VHmNvtRmVlJU37LRLlJx1lKI3b7UFVpZmWPhCJ2p9MMCIvN8m0Q/P555/j1VdfbdKZAYDU1FS8/PLL2Lt3r+j9y/NVR5jD4UBubi5N+y0S5ScdZSiNw+FGbl45LX0gErU/mWhnY2jKy8uveWfT0KFDaR6almYwGHDrrbdCoaCVesWg/KSjDKUxGDQYN64fFAp5HtjljtofaQ2dO3dGSUkJunfvHvTnxcXFku54or/2IBiGgVKppNsVRaL8pKMMpfHlp6D8RKL2JxPt7AzNXXfdhWXLlsHlajqDt9PpxPPPP4+77rpL9P7pDE0QdrsdxcXF6NOnD3S68BcG6+goP+koQ2nsdjdKiqvRu09n6HR0p1O4qP3JRDubWO+FF17AyJEjMWDAAMybNw+DBg0CAOTm5mLz5s1wOp14//33Re+fOjRB8DwPt9uNDr4QuWiUn3SUoTS+/DyUn0jU/mSCZUR2aOR5Zq179+44cuQInnjiCSxdulRoXwzD4M4778SmTZvQo0cP0ftn+A7eYv3LtEfLMuuERBuP91ikq0AaUbAjRT2PjpVtx591TcUexMXpRTzfisTUX8n6vbp8+TIKCgoAAP3790diYqLkfdIZGkIIIUSOGMb3EPM8mevUqRNuueWWFt2nPC+0RZjZbEZmZibMZnOkqxKVKD/pKENpzGYHDh0sgNlMtx2LQe1PJtpwUPDmzZvRp08faLVaZGRk4NChQ9csn5mZiYyMDGi1WvTt2xdvvfWW2FfZYqhDE4RGo0H//v2h0WgiXZWoRPlJRxlKo9Eo0bdfEjQaOgktBrU/mWijDs3u3buxcOFCLFu2DNnZ2Rg/fjymTp0Kk8kUtHxxcTGmTZuG8ePHIzs7G//zP/+DBQsWYM+ePS3xqkWjMTR0XZiQVkVjaOSFxtDInzCG5tKX4sfQ3HBvyO/VqFGjMGLECLz55pvCtrS0NPzyl7/E2rVrm5RfsmQJvvzyS+Tl5Qnb5syZg+PHj+PIkSNh17el0NeXIDiOQ11dHeLj46FUUkThovykowyl4TgP6ursiI/XQamkyeHCRe1PHuotDlGXj+otvkut9fX1Ads1Gk2Ts24ulwtGoxHPPvtswPbJkyfj8OHDQfd/5MgRTJ48OWDblClTsG3bNrjdbqhUkZkqgVpqEHa7HSdOnEBGRgZiY2MjXZ2oQ/lJRxlKY7e7cfLkBYwY0ROxsdShCRe1v8hSq9VITU1F716/Eb0Pg8HQ5BboFStWYOXKlQHbqqur4fF4mqyvlJKS0uwyBBUVFUHLcxyH6upqdOnSRXS9paAOTRB6vR5jxoyJWC8z2lF+0lGG0uj1Gowe3RcqFXVmxKD2F1larRbFxcVBZ9QNFc/zTWZ6vtaYqKvLBnv+9coH296WqEMTBMuyNBhOAspPuvaUodgxG9J+J6Cio5to7an9RSutVgutVtvqv6dz585QKBRNzsZUVlYGXRUb8K2MHay8UqmUtBaTVHSXUxAOhwOnT5+mlWZFovykowylofykofw6DrVajYyMDOzfvz9g+/79+zF27NigzxkzZkyT8v/+978xcuTIiJ7Vow5NEF6vF1arFV6vN9JViUqUn3SUoTSUnzSUX8eyePFibN26Fdu3b0deXh4WLVoEk8mEOXPmAACWLl2Khx56SCg/Z84cnDt3DosXL0ZeXh62b9+Obdu24emnn47USwBAt23TrYiEEBICOla2b5s3b8bLL7+M8vJyDB06FOvXr8dtt90GAJg9ezZKSkpw4MABoXxmZiYWLVqEU6dOoWvXrliyZInQAYoU6tDQHykhhFwXHSuJ3NElpyAsFgu+++47WCyWSFclKlF+0lGG0lB+0lB+JBpRhyYItVqNnj17Qq1WR7oqUYnyk44ylIbyk4byI9GILjnRaVRCCLkuOlYSuaMzNEFwHIfa2lpwHBfpqkQlyk86ylAayk8ayo9EI+rQBGG325GTkwO73R7pqkQlyk86ylAayk8ayo9EI7rkFOQ0qtfrhdPphEajAStiYbCOjvKTjjKUhvKTJlh+dMmJyB1NDh4Ey7LQ6XSRrkbUovykowylofykofxINKKvLkE4HA4UFBTQtN8iUX7SUYbSUH7SUH4kGlGHJgiPx4Pa2lp4PJ5IVyUqUX7SUYbSUH7SUH4kGtEYGrouTAgh10XHSiJ3dIaGEEIIIVGPBgU3qK+vF/5tsViQm5uLwYMHw2AwRLBW0Ynyk44ylIbykyZYfo2PkYTIUYfv0KjVaqSmpqJHjx6RrgohhMhaamoqLYdAZKvDj6EBfCP6XS5XpKtBCCGyplarodVqI10NQoKiDg0hhBBCoh4NCiaEEEJI1KMODSGEEEKiHnVoCCGEEBL1qENDCCGEkKhHHRpCCCGERD3q0BBCCCEk6kV9h+bgwYOYPn06unbtCoZh8Pnnnwf8/LPPPsOUKVPQuXNnMAyDnJycgJ+XlJSAYZigj08++UQod+TIEQwbNgy9evXCO++8I2wfPXo05s6dG7DPN998EwzDYNu2bQHbH330UYwdO7ZlXngLkZqf35EjR3D77bdDr9cjISEBEydOhN1uD/h5e8wPaJkMJ06c2KT9PfjggwFl2muGLdUGAYDneUydOjXofii/5vN7/PHH0a9fP+h0OiQlJeG+++5Dfn5+QJn2mh9pP6K+Q2O1WnHzzTdj06ZNzf583LhxeOmll4L+vEePHigvLw94vPDCC9Dr9Zg6dapQ7pFHHsHzzz+PXbt2Yd26dTCZTACASZMm4dtvvw3Y54EDB9CjR4+g2ydNmiTl5bY4qfkBvgPdXXfdhcmTJ+PHH3/ETz/9hPnz54NlrzSv9pof0DIZAsBjjz0W0A63bNkS8PP2mmFL5QcAGzZsAMMwQX9G+TWfX0ZGBt59913k5eXhX//6F3iex+TJkwNW226v+ZF2hG9HAPB79+4N+rPi4mIeAJ+dnX3d/QwbNox/5JFHArb17NmTP3v2LG+xWPiRI0fyp06d4nme5//1r3/xAPgLFy4IZVNSUvjNmzfz3bp1E7aZTCYeAL9///7wX1gbEZvfqFGj+Oeee+6a++4I+fG8+AwnTJjAP/nkk9fcd0fIUMrfcE5ODt+9e3e+vLw86H4ov9CPgcePH+cB8IWFhcK2jpAfiW5Rf4ampRmNRuTk5ODRRx8N2L58+XKkpaUhPj4eo0ePxuDBgwEA48aNg0qlwoEDBwAAubm5sNvteOSRR1BfX4+CggIAwLfffgu1Wt3uTrdWVlbihx9+QHJyMsaOHYuUlBRMmDAB3333XUA5yu/6du7cic6dO2PIkCF4+umnYTabA35OGTbPZrPht7/9LTZt2oTU1NSgZSi/0FitVrz77rvo06dPwBp3lB+RO+rQXGXbtm1IS0tr8kf36KOP4tKlS6iqqsLGjRuF7Xq9Hr/4xS+EP+YDBw7g1ltvhUajwbhx4wK2jxo1CjExMW31UtrE2bNnAQArV67EY489hn/+858YMWIE/uu//ks4kAGU3/XMnDkTu3btwoEDB/D8889jz549uP/++wPKUIbNW7RoEcaOHYv77ruv2TKU37Vt3rwZBoMBBoMB//znP7F///6AhSgpPyJ31KFpxG6348MPP2xydsZPr9ejU6dOTbZPmjQp4I924sSJAIAJEyYEbL/99ttbo9oR5fV6AfgGFT788MMYPnw41q9fjxtvvBHbt28PKEv5Ne+xxx7DHXfcgaFDh+LBBx/Ep59+iv/85z/IysoKKEcZNvXll1/im2++wYYNG65blvJr3syZM5GdnY3MzEwMGDAAv/nNb+BwOALKUH5EzqhD08inn34Km82Ghx56KKznTZo0CWfOnEFZWRkyMzMxYcIEAFf+mE0mE4qLi9vlYLguXboAgHD62S8tLU0YNHg9HTm/5owYMQIqlSrgLNe1dOQMv/nmGxQVFSEhIQFKpRJKpRIA8Ktf/Ur4YL2ejpyfX3x8PAYMGIDbbrsNn376KfLz87F3796Qnkv5ETlQRroCcrJt2zbce++9SEpKCut5Y8eOhUajwebNm2G325GRkQEAGDlyJOrq6rBlyxZotVqMHj26NaodUb1790bXrl1x+vTpgO1nzpwJuEvsWjpyfs05deoU3G630GG8no6c4bPPPos//vGPAdvS09Oxfv16TJ8+PaR9dOT8msPzPJxOZ0hlKT8iB1HfobFYLCgsLBT+v7i4GDk5OUhMTETPnj1RU1MDk8mECxcuAIDwwZuamhoweLCwsBAHDx7Evn37wq6DTqfDqFGjsHHjRowbNw4KhQIAoFKpMGbMGGzcuFH4g5cbqfkxDINnnnkGK1aswM0334xhw4bhvffeQ35+Pj799NOQ6hDN+QHSMywqKsLOnTsxbdo0dO7cGbm5uXjqqacwfPhwjBs3LqQ6RHOGUvO7+m/Zr2fPnujTp09IdejI+Z09exa7d+/G5MmTkZSUhLKyMqxbtw46nQ7Tpk0LqQ7RnB9pRyJ9m5VU3377LQ+gyWPWrFk8z/P8u+++G/TnK1asCNjP0qVL+e7du/Mej0dUPVasWMED4F966aWA7atXr+YB8KtXrxa139bWUvmtXbuW7969Ox8TE8OPGTOGP3ToUFj1iNb8eF56hiaTib/tttv4xMREXq1W8/369eMXLFjAX7p0Kax6RGuGLdUGG8M1bl9uTkfNr6ysjJ86dSqfnJzMq1Qqvnv37vzvfvc7Pj8/P6x6RGt+pP1geJ7nW6RnRAghhBASITQomBBCCCFRjzo0hBBCCIl61KEhhBBCSNSjDg0hhBBCoh51aAghhBAS9ahDQwghhJCoRx0aQgghhEQ96tAQQgghJOpRh4YQQgghUY86NIQQQgiJetShIYQQQkjU+/83YkHoAppqxwAAAABJRU5ErkJggg==", + "text/plain": [ + "