-
Notifications
You must be signed in to change notification settings - Fork 0
/
11-model-selection.Rmd
100 lines (90 loc) · 2.13 KB
/
11-model-selection.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
title: "Model Selection"
author: "Kundan K. Rao"
date: "01/12/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Model selection
## Internal measure
```{r}
library(clValid)
# wine data set:
# Computing clValid
clmethods <- c("hierarchical","kmeans","pam")
intern <- clValid(data.scaled, nClust = 2:6,
clMethods = clmethods, validation = "internal",method="complete")
# Summary
summary(intern)
```
## stability
```{r}
# Stability measures
clmethods <- c("hierarchical","kmeans","pam")
stab <- clValid(data.scaled, nClust = 2:6, clMethods = clmethods,
validation = "stability",method="complete")
# Display only optimal Scores
optimalScores(stab)
```
# computing p-value for hirarchical clustering
```{r}
library(pvclust)
set.seed(123)
res.pv <- pvclust(data.scaled, method.dist="euclidean",
method.hclust="average", nboot = 100)
# Default plot
plot(res.pv, hang = -1, cex = 0.5)
pvrect(res.pv)
```
# computing p-value for hirarchical clustering
```{r}
library(pvclust)
set.seed(123)
res.pv <- pvclust(data.scaled, method.dist="euclidean",
method.hclust="complete", nboot = 100)
# Default plot
plot(res.pv, hang = -1, cex = 0.5)
pvrect(res.pv)
```
# computing p-value for hirarchical clustering
```{r}
library(pvclust)
set.seed(123)
res.pv <- pvclust(data.scaled, method.dist="euclidean",
method.hclust="ward", nboot = 100)
# Default plot
plot(res.pv, hang = -1, cex = 0.5)
pvrect(res.pv)
```
# computing p-value for hirarchical clustering
```{r}
library(pvclust)
set.seed(123)
res.pv <- pvclust(data.scaled, method.dist="cor",
method.hclust="average", nboot = 100)
# Default plot
plot(res.pv, hang = -1, cex = 0.5)
pvrect(res.pv)
```
# computing p-value for hirarchical clustering
```{r}
library(pvclust)
set.seed(123)
res.pv <- pvclust(data.scaled, method.dist="cor",
method.hclust="complete", nboot = 100)
# Default plot
plot(res.pv, hang = -1, cex = 0.5)
pvrect(res.pv)
```
# computing p-value for hirarchical clustering
```{r}
library(pvclust)
set.seed(123)
res.pv <- pvclust(data.scaled, method.dist="cor",
method.hclust="average", nboot = 100)
# Default plot
plot(res.pv, hang = -1, cex = 0.5)
pvrect(res.pv)
```