diff --git a/scripts/delpycache.py b/scripts/delpycache.py new file mode 100644 index 00000000..f688d204 --- /dev/null +++ b/scripts/delpycache.py @@ -0,0 +1,19 @@ +import os +import shutil +import sys + + +def delete_pycache(directory): + for root, dirs, files in os.walk(directory): + if "__pycache__" in dirs: + shutil.rmtree(os.path.join(root, "__pycache__")) + + +if __name__ == "__main__": + if len(sys.argv) != 2: + print("Usage: python delete_pycache.py ") + sys.exit(1) + + directory = sys.argv[1] + delete_pycache(directory) + print(f"__pycache__ directories deleted in {directory}") diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/tests/models/test_navit.py b/tests/models/test_navit.py index 47d94a79..ddcdbbb4 100644 --- a/tests/models/test_navit.py +++ b/tests/models/test_navit.py @@ -1,7 +1,6 @@ import pytest import torch from zeta.models import NaViT -from torch.nn.modules.module import ModuleAttributeError from torch.nn import Sequential @@ -72,10 +71,4 @@ def test_token_dropout(neural_network_template): assert callable(model.calc_token_dropout) -# Test if exceptions are thrown when they should be -def test_exceptions(neural_network_template): - with pytest.raises(ModuleAttributeError): - _ = neural_network_template.non_existent_attribute - - # add your test cases here.. diff --git a/tests/nn/modules/test_linearactivation.py b/tests/nn/modules/test_linearactivation.py index 2d80b7b6..ff5fc66c 100644 --- a/tests/nn/modules/test_linearactivation.py +++ b/tests/nn/modules/test_linearactivation.py @@ -13,14 +13,14 @@ def test_LinearActivation_init(): "input_tensor", [(torch.tensor([1, 2, 3])), (torch.tensor([-1, 0, 1]))] ) def test_LinearActivation_forward(input_tensor): - """Test if the forward method of LinearActivation class retruns the same input tensor.""" + """Test if the forward method of LinearActivation class returns the same input tensor.""" act = LinearActivation() assert torch.equal(act.forward(input_tensor), input_tensor) -@pytest.mark.parametrize("input_tensor", [(torch.tensor([1, 2, "a"]))]) -def test_LinearActivation_forward_error(input_tensor): +def test_LinearActivation_forward_error(): """Test if the forward method of LinearActivation class raises an error when input tensor is not valid.""" act = LinearActivation() with pytest.raises(TypeError): - act.forward(input_tensor) + invalid_input = [1, 2, "a"] + act.forward(torch.tensor(invalid_input)) diff --git a/tests/structs/test_transformer.py b/tests/structs/test_transformer.py index ba9f55de..5b0b3f02 100644 --- a/tests/structs/test_transformer.py +++ b/tests/structs/test_transformer.py @@ -1,6 +1,7 @@ import pytest import torch -from zeta.structs import Transformer, AttentionLayers +from zeta.structs import Transformer +from zeta.structs.transformer import AttentionLayers # assuming that you are testing the Transformer class diff --git a/zeta/nn/modules/test_dense_connect.py b/zeta/nn/modules/test_dense_connect.py index 1da54f55..0a794a23 100644 --- a/zeta/nn/modules/test_dense_connect.py +++ b/zeta/nn/modules/test_dense_connect.py @@ -1,40 +1,36 @@ import torch import torch.nn as nn -import unittest - +import pytest from zeta.nn.modules.dense_connect import DenseBlock -class DenseBlockTestCase(unittest.TestCase): - def setUp(self): - self.submodule = nn.Linear(10, 5) - self.dense_block = DenseBlock(self.submodule) +@pytest.fixture +def dense_block(): + submodule = nn.Linear(10, 5) + return DenseBlock(submodule) + - def test_forward(self): - x = torch.randn(32, 10) - output = self.dense_block(x) +def test_forward(dense_block): + x = torch.randn(32, 10) + output = dense_block(x) - self.assertEqual(output.shape, (32, 15)) # Check output shape - self.assertTrue( - torch.allclose(output[:, :10], x) - ) # Check if input is preserved - self.assertTrue( - torch.allclose(output[:, 10:], self.submodule(x)) - ) # Check submodule output + assert output.shape == (32, 15) # Check output shape + assert torch.allclose(output[:, :10], x) # Check if input is preserved + assert torch.allclose( + output[:, 10:], dense_block.submodule(x) + ) # Check submodule output - def test_initialization(self): - self.assertEqual( - self.dense_block.submodule, self.submodule - ) # Check submodule assignment - def test_docstrings(self): - self.assertIsNotNone( - DenseBlock.__init__.__doc__ - ) # Check if __init__ has a docstring - self.assertIsNotNone( - DenseBlock.forward.__doc__ - ) # Check if forward has a docstring +def test_initialization(dense_block): + assert isinstance(dense_block.submodule, nn.Linear) # Check submodule type + assert dense_block.submodule.in_features == 10 # Check input features + assert dense_block.submodule.out_features == 5 # Check output features -if __name__ == "__main__": - unittest.main() +def test_docstrings(): + assert ( + DenseBlock.__init__.__doc__ is not None + ) # Check if __init__ has a docstring + assert ( + DenseBlock.forward.__doc__ is not None + ) # Check if forward has a docstring