-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrerank.py
288 lines (231 loc) · 9.6 KB
/
rerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -----------------------------------------------------------
# Re-ranking and ensemble implementation based on
# "Matching Images and Text with Multi-modal Tensor Fusion and Re-ranking"
# "Learning Dual Semantic Relations with Graph Attention for Image-Text Matching"
# Keyu Wen, Xiaodong Gu, and Qingrong Cheng
# IEEE Transactions on Circuits and Systems for Video Technology, 2020
# Writen by Keyu Wen, 2020
# ------------------------------------------------------------
import numpy as np
import time
import argparse
def i2t_rerank(sim, K1, K2): #(d,15,1)
size_i = sim.shape[0] # d
size_t = sim.shape[1] # 5d
sort_i2t = np.argsort(-sim, 1)
sort_t2i = np.argsort(-sim, 0)
sort_i2t_re = np.copy(sort_i2t)[:, :K1]
address = np.array([])
for i in range(size_i):
for j in range(K1):
result_t = sort_i2t[i][j]
query = sort_t2i[:, result_t]
# query = sort_t2i[:K2, result_t]
address = np.append(address, np.where(query == i)[0][0])
sort = np.argsort(address)
sort_i2t_re[i] = sort_i2t_re[i][sort]
address = np.array([])
sort_i2t[:,:K1] = sort_i2t_re
return sort_i2t
def t2i_rerank(sim, K1, K2):
size_i = sim.shape[0]
size_t = sim.shape[1]
sort_i2t = np.argsort(-sim, 1)
sort_t2i = np.argsort(-sim, 0)
sort_t2i_re = np.copy(sort_t2i)[:K1, :]
address = np.array([])
for i in range(size_t):
for j in range(K1):
result_i = sort_t2i[j][i]
query = sort_i2t[result_i, :]
# print(query)
# query = sort_t2i[:K2, result_t]
ranks = 1e20
# for k in range(5):
# qewfo = i//5 * 5 + k
# print(np.where(query == i))
tmp = np.where(query == i)[0][0]
if tmp < ranks:
ranks = tmp
address = np.append(address, ranks)
sort = np.argsort(address)
sort_t2i_re[:, i] = sort_t2i_re[:, i][sort]
address = np.array([])
sort_t2i[:K1, :] = sort_t2i_re
return sort_t2i
def t2i_rerank_new(sim, sim_T, K1, K2):
size_i = sim.shape[0]
size_t = sim.shape[1]
sort_i2t = np.argsort(-sim, 1)
sort_t2i = np.argsort(-sim, 0)
sort_t2i_re = np.copy(sort_t2i)[:K1, :]
sort_t2t = np.argsort(-sim_T, 1) # 按行从大到小排序
# print(sort_t2t.shape)
sort_t2t_re = np.copy(sort_t2t)[:, :K2]
address = np.array([])
for i in range(size_t):
for j in range(K1):
result_i = sort_t2i[j][i] # Ij
query = sort_i2t[result_i, :] # 第j张图片对应T的排序
# query = sort_t2i[:K2, result_t]
ranks = 1e20
G = sort_t2t_re[i]
for k in range(K2):
# qewfo = i//5 * 5 + k
# print(qewfo)
tmp = np.where(query == G[k])[0][0]
if tmp < ranks:
ranks = tmp
address = np.append(address, ranks)
sort = np.argsort(address)
sort_t2i_re[:, i] = sort_t2i_re[:, i][sort]
address = np.array([])
sort_t2i[:K1, :] = sort_t2i_re
return sort_t2i
def acc_i2t2(input):
"""Computes the precision@k for the specified values of k of i2t"""
#input = collect_match(input).numpy()
image_size = input.shape[0]
ranks = np.zeros(image_size)
top1 = np.zeros(image_size)
for index in range(image_size):
inds = input[index]
# Score
# if index == 197:
# print('s')
rank = 1e20
for i in range(5 * index, min(5 * index + 5, image_size*5), 1):
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
top1[index] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
return (r1, r5, r10, medr, meanr), (ranks, top1)
def acc_t2i2(input):
"""Computes the precision@k for the specified values of k of t2i"""
#input = collect_match(input).numpy()
image_size = input.shape[0]
ranks = np.zeros(5*image_size)
top1 = np.zeros(5*image_size)
# --> (5N(caption), N(image))
input = input.T
for index in range(image_size):
for i in range(5):
inds = input[5 * index + i]
ranks[5 * index + i] = np.where(inds == index)[0][0]
top1[5 * index + i] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
return (r1, r5, r10, medr, meanr), (ranks, top1)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_name', default='coco', help='data name')
parser.add_argument('--fold', action='store_true', help='fold5')
opt = parser.parse_args()
data = opt.data_name
fold = opt.fold
# The accuracy computing
# Input the prediction similarity score matrix (d * 5d)
if data == 'coco':
if fold == True:
path1 = ''
path = 'coco_sims/'
r1 = np.array((0,0,0))
r1_t = np.array((0,0,0))
r2 = np.array((0,0,0)) # rerank
r2_t = np.array((0,0,0))
for i in range(5):
d1 = np.load(path1+'sims_full_%d.npy' % i)
d2 = np.load(path+'sims_full_%d.npy' % i)
# d1T = np.load(path1+'sims_full_T_%d.npy' % i)
# d2T = np.load(path+'sims_full_T_%d.npy' % i)
d = d1+d2
# d_T = d1T+d2T
t1 = time.time()
# calculate the i2t score after rerank
sort_rerank = i2t_rerank(d, 15, 1)
(r1i, r5i, r10i, medri, meanri), _ = acc_i2t2(np.argsort(-d, 1))
(r1i2, r5i2, r10i2, medri2, meanri2), _ = acc_i2t2(sort_rerank)
print(r1i, r5i, r10i, medri, meanri)
print(r1i2, r5i2, r10i2, medri2, meanri2)
r1 = r1 + np.array((r1i, r5i, r10i))
r2 = r2 + np.array((r1i2, r5i2, r10i2))
# calculate the t2i score after rerank
# sort_rerank = t2i_rerank(d, 20, 1)
# sort_rerank = t2i_rerank_new(d, d_T, 20, 1)
(r1t, r5t, r10t, medrt, meanrt), _ = acc_t2i2(np.argsort(-d, 0))
# (r1t2, r5t2, r10t2, medrt2, meanrt2), _ = acc_t2i2(sort_rerank)
print(r1t, r5t, r10t, medrt, meanrt)
# print(r1t2, r5t2, r10t2, medrt2, meanrt2)
# print((r1t, r5t, r10t))
r1_t = r1_t + np.array((r1t, r5t, r10t))
# r2_t = r2_t + np.array((r1t2, r5t2, r10t2))
t2 = time.time()
print(t2-t1)
print('--------------------')
print('5-cross test')
print(r1/5)
print(r1_t/5)
print('rerank!')
print(r2/5)
# print(r2_t/5)
else:
path = 'coco_sims/'
path1 = ''
d1 = np.load(path+'sims_full_5k.npy')
d2 = np.load(path1+'sims_full_5k.npy')
d = d1+ d2
t1 = time.time()
# calculate the i2t score after rerank
sort_rerank = i2t_rerank(d, 15, 1)
(r1i, r5i, r10i, medri, meanri), _ = acc_i2t2(np.argsort(-d, 1))
(r1i2, r5i2, r10i2, medri2, meanri2), _ = acc_i2t2(sort_rerank)
print(r1i, r5i, r10i, medri, meanri)
print(r1i2, r5i2, r10i2, medri2, meanri2)
# calculate the t2i score after rerank
# sort_rerank = t2i_rerank(d, 20, 1)
# sort_rerank = t2i_rerank_new(d, d_T, 12, 1)
(r1t, r5t, r10t, medrt, meanrt), _ = acc_t2i2(np.argsort(-d, 0))
# (r1t2, r5t2, r10t2, medrt2, meanrt2), _ = acc_t2i2(sort_rerank)
print(r1t, r5t, r10t, medrt, meanrt)
# print(r1t2, r5t2, r10t2, medrt2, meanrt2)
t2 = time.time()
print(t2-t1)
else:
d1 = np.load('flickr_sims/sims_f.npy')
d2 = np.load('sims_f.npy')
d = d1+d2
# d1T = np.load('flickr_sims/sims_f_T.npy')
# d2T = np.load('sims_f_T.npy')
# d_T = d1T+d2T
t1 = time.time()
# calculate the i2t score after rerank
sort_rerank = i2t_rerank(d, 15, 1)
(r1i, r5i, r10i, medri, meanri), _ = acc_i2t2(np.argsort(-d, 1))
(r1i2, r5i2, r10i2, medri2, meanri2), _ = acc_i2t2(sort_rerank)
print(r1i, r5i, r10i, medri, meanri)
print(r1i2, r5i2, r10i2, medri2, meanri2)
# calculate the t2i score after rerank
# sort_rerank = t2i_rerank_new(d, d_T, 20, 4)
(r1t, r5t, r10t, medrt, meanrt), _ = acc_t2i2(np.argsort(-d, 0))
# (r1t2, r5t2, r10t2, medrt2, meanrt2), _ = acc_t2i2(sort_rerank)
print(r1t, r5t, r10t, medrt, meanrt)
# print(r1t2, r5t2, r10t2, medrt2, meanrt2)
rsum = r1i+r5i+r10i+r1t+r5t+r10t
print('rsum:%f' % rsum)
rsum_rr = r1i2+r5i2+r10i2+r1t+r5t+r10t
print('rsum_rr:%f' % rsum_rr)
t2 = time.time()
print(t2-t1)
if __name__ == '__main__':
main()