Skip to content

Latest commit

 

History

History
263 lines (222 loc) · 21.2 KB

README.md

File metadata and controls

263 lines (222 loc) · 21.2 KB

License: MIT

Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer


Jia-Ren Lin*, Shu Wang*, Shannon Coy*, Yu-An Chen, Clarence Yapp, Madison Tyler, Maulik K. Nariya, Cody N. Heiser, Ken S. Lau, Sandro Santagata†, and Peter K. Sorger†

*These (first) authors contributed equally
†These (senior) authors contributed equally

DOI: 10.1016/J.CELL.2022.12.028
Learn more: tissue-atlas.org/atlas-datasets/lin-wang-coy-2021/



SUMMARY

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T-cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.


VIEW IMAGE DATA ONLINE

Some data is available as narrated data explorations (with text and audio narration) for anonymous on-line browsing using MINERVA software (Rashid et al., 2022), which allows users to pan and zoom through the images without requiring any software installation.

To view the Minerva stories, please visit tissue-atlas.org/atlas-datasets/lin-wang-coy-2021/#data-explorations.


ACCESS THE DATA

All images at full resolution, derived image data (e.g., segmentation masks), and cell count tables have been released via the NCI-sponsored repository for Human Tumor Atlas Network (HTAN; humantumoratlas.org/explore).

The dataset, consist of 47 CRC1 images (2.1 TB) and CRC2-17 images (4.4 TB), is available through Amazon Web Services S3 at the following location:

s3://lin-2021-crc-atlas/data/

The list of S3 Objects in the bucket can be accessed at https://lin-2021-crc-atlas.s3.amazonaws.com/

Visit the following Zenodo page for instructions on how to access the primary image data associated with this publication on AWS: 10.5281/zenodo.10223573

Contact: Email tissue-atlas(at)hms.harvard.edu with the subject line "CRC: Data Access" if you experience issues accessing the data or have questions.

See the tables below for an inventory of the dataset, which includes:

CRC1 images and image metadata
CRC2-17 images and image metadata
Spatial features tables
Single-cell sequencing data and GeoMX count tables


CRC1 Images

The following table contains summary biospecimen and file metadata for all 47 sections.

Section Internal_Biospecimen_ID Method Thickness (μm) Size (GB) Image Filename Metadata Filename
1 WD-76845-001 H&E 5 12.2 WD-76845-001.ome.tif WD-76845-001-metadata.csv
2 WD-76845-002 t-CyCIF 5 88 WD-76845-002.ome.tif WD-76845-002-metadata.csv
6 WD-76845-006 H&E 5 11 WD-76845-006.ome.tif WD-76845-006-metadata.csv
7 WD-76845-007 t-CyCIF 5 80.2 WD-76845-007.ome.tif WD-76845-007-metadata.csv
13 WD-76845-013 H&E 5 11.9 WD-76845-013.ome.tif WD-76845-013-metadata.csv
14 WD-76845-014 t-CyCIF 5 72.4 WD-76845-014.ome.tif WD-76845-014-metadata.csv
19 WD-76845-019 H&E 5 12.7 WD-76845-019.ome.tif WD-76845-019-metadata.csv
20 WD-76845-020 t-CyCIF 5 83.6 WD-76845-020.ome.tif WD-76845-020-metadata.csv
24 WD-76845-024 H&E 5 11 WD-76845-024.ome.tif WD-76845-024-metadata.csv
25 WD-76845-025 t-CyCIF 5 83.6 WD-76845-025.ome.tif WD-76845-025-metadata.csv
28 WD-76845-028 H&E 5 10.1 WD-76845-028.ome.tif WD-76845-028-metadata.csv
29 WD-76845-029 t-CyCIF 5 74.4 WD-76845-029.ome.tif WD-76845-029-metadata.csv
33 WD-76845-033 H&E 5 11.8 WD-76845-033.ome.tif WD-76845-033-metadata.csv
34 WD-76845-034 t-CyCIF 5 82.2 WD-76845-034.ome.tif WD-76845-034-metadata.csv
38 WD-76845-038 H&E 5 11.3 WD-76845-038.ome.tif WD-76845-038-metadata.csv
39 WD-76845-039 t-CyCIF 5 80.2 WD-76845-039.ome.tif WD-76845-039-metadata.csv
43 WD-76845-043 H&E 5 11 WD-76845-043.ome.tif WD-76845-043-metadata.csv
44 WD-76845-044 t-CyCIF 5 76.6 WD-76845-044.ome.tif WD-76845-044-metadata.csv
48 WD-76845-048 H&E 5 11.2 WD-76845-048.ome.tif WD-76845-048-metadata.csv
49 WD-76845-049 t-CyCIF 5 76.6 WD-76845-049.ome.tif WD-76845-049-metadata.csv
50 WD-76845-050 t-CyCIF 5 80.2 WD-76845-050.ome.tif WD-76845-050-metadata.csv
51 WD-76845-051 t-CyCIF 5 76.6 WD-76845-051.ome.tif WD-76845-051-metadata.csv
52 WD-76845-052 t-CyCIF 5 80.2 WD-76845-052.ome.tif WD-76845-052-metadata.csv
53 WD-76845-053 H&E 5 10.5 WD-76845-053.ome.tif WD-76845-053-metadata.csv
54 WD-76845-054 t-CyCIF 5 74.5 WD-76845-054.ome.tif WD-76845-054-metadata.csv
58 WD-76845-058 H&E 5 10.5 WD-76845-058.ome.tif WD-76845-058-metadata.csv
59 WD-76845-059 t-CyCIF 5 80.2 WD-76845-059.ome.tif WD-76845-059-metadata.csv
63 WD-76845-063 H&E 5 10.5 WD-76845-063.ome.tif WD-76845-063-metadata.csv
64 WD-76845-064 t-CyCIF 5 74.4 WD-76845-064.ome.tif WD-76845-064-metadata.csv
68 WD-76845-068 H&E 5 10.1 WD-76845-068.ome.tif WD-76845-068-metadata.csv
69 WD-76845-069 t-CyCIF 5 69.5 WD-76845-069.ome.tif WD-76845-069-metadata.csv
73 WD-76845-073 H&E 5 9.1 WD-76845-073.ome.tif WD-76845-073-metadata.csv
74 WD-76845-074 t-CyCIF 5 69.5 WD-76845-074.ome.tif WD-76845-074-metadata.csv
77 WD-76845-077 H&E 5 10.5 WD-76845-077.ome.tif WD-76845-077-metadata.csv
78 WD-76845-078 t-CyCIF 5 69.5 WD-76845-078.ome.tif WD-76845-078-metadata.csv
83 WD-76845-083 H&E 5 9.6 WD-76845-083.ome.tif WD-76845-083-metadata.csv
84 WD-76845-084 t-CyCIF 5 69.5 WD-76845-084.ome.tif WD-76845-084-metadata.csv
85 WD-76845-085 H&E 4 10.6 WD-76845-085.ome.tif WD-76845-085-metadata.csv
86 WD-76845-086 t-CyCIF 4 72.4 WD-76845-086.ome.tif WD-76845-086-metadata.csv
90 WD-76845-090 H&E 4 9.9 WD-76845-090.ome.tif WD-76845-090-metadata.csv
91 WD-76845-091 t-CyCIF 4 72.4 WD-76845-091.ome.tif WD-76845-091-metadata.csv
96 WD-76845-096 H&E 4 10.6 WD-76845-096.ome.tif WD-76845-096-metadata.csv
97 WD-76845-097 t-CyCIF 4 74.5 WD-76845-097.ome.tif WD-76845-097-metadata.csv
101 WD-76845-101 H&E 4 10.5 WD-76845-101.ome.tif WD-76845-101-metadata.csv
102 WD-76845-102 t-CyCIF 4 72.4 WD-76845-102.ome.tif WD-76845-102-metadata.csv
105 WD-76845-105 H&E 4 9.6 WD-76845-105.ome.tif WD-76845-105-metadata.csv
106 WD-76845-106 t-CyCIF 4 69.5 WD-76845-106.ome.tif WD-76845-106-metadata.csv

CRC2-17 Images

Files CRC02 to CRC17 derive from additional patients from the Brigham and Women’s Hospital.

H&E

Patient Data filename Metadata filename File size (GB)
CRC02 data/CRC02-HE.ome.tif - 17.2
CRC03 data/CRC03-HE.ome.tif - 12.9
CRC04 data/CRC04-HE.ome.tif - 15.5
CRC05 data/CRC05-HE.ome.tif - 12.8
CRC06 data/CRC06-HE.ome.tif - 16.2
CRC07 data/CRC07-HE.ome.tif - 10.9
CRC08 data/CRC08-HE.ome.tif - 18.0
CRC09 data/CRC09-HE.ome.tif - 12.6
CRC10 data/CRC10-HE.ome.tif - 19.5
CRC11 data/CRC11-HE.ome.tif - 13.6
CRC12 data/CRC12-HE.ome.tif - 15.0
CRC13 data/CRC13-HE.ome.tif - 7.5
CRC14 data/CRC14-HE.ome.tif - 13.2
CRC15 data/CRC15-HE.ome.tif - 12.6
CRC16 data/CRC16-HE.ome.tif - 15.4
CRC17 data/CRC17-HE.ome.tif - 16.5

Main CyCIF panel

Patient Data filename Metadata filename File size (GB)
CRC02 data/CRC02.ome.tif metadata/CRC202105 HTAN channel metadata.csv 93.4
CRC03 data/CRC03.ome.tif metadata/CRC202105 HTAN channel metadata.csv 72.6
CRC04 data/CRC04.ome.tif metadata/CRC202105 HTAN channel metadata.csv 70.6
CRC05 data/CRC05.ome.tif metadata/CRC202105 HTAN channel metadata.csv 54.7
CRC06 data/CRC06.ome.tif metadata/CRC202105 HTAN channel metadata.csv 74.5
CRC07 data/CRC07.ome.tif metadata/CRC202105 HTAN channel metadata.csv 61.2
CRC08 data/CRC08.ome.tif metadata/CRC202105 HTAN channel metadata.csv 86.2
CRC09 data/CRC09.ome.tif metadata/CRC202105 HTAN channel metadata.csv 68.1
CRC10 data/CRC10.ome.tif metadata/CRC202105 HTAN channel metadata.csv 62.5
CRC11 data/CRC11.ome.tif metadata/CRC202105 HTAN channel metadata.csv 59.6
CRC12 data/CRC12.ome.tif metadata/CRC202105 HTAN channel metadata.csv 76.7
CRC13 data/CRC13.ome.tif metadata/CRC202105 HTAN channel metadata.csv 49.6
CRC14 data/CRC14.ome.tif metadata/CRC202105 HTAN channel metadata.csv 75.5
CRC15 data/CRC15.ome.tif metadata/CRC202105 HTAN channel metadata.csv 75.1
CRC16 data/CRC16.ome.tif metadata/CRC202105 HTAN channel metadata.csv 81.7
CRC17 data/CRC17.ome.tif metadata/CRC202105 HTAN channel metadata.csv 79.6

Immune-focused CyCIF panel

Patient Data filename Metadata filename File size (GB)
CRC02 data/73-8/TNPCRC_01.ome.tif metadata/73-8-channel-metadata.csv 111.2
CRC03 data/73-8/TNPCRC_02.ome.tif metadata/73-8-channel-metadata.csv 70.1
CRC04 data/73-8/TNPCRC_03.ome.tif metadata/73-8-channel-metadata.csv 100.3
CRC05 data/73-8/TNPCRC_04.ome.tif metadata/73-8-channel-metadata.csv 81.9
CRC06 data/73-8/TNPCRC_05.ome.tif metadata/73-8-channel-metadata.csv 118.3
CRC07 data/73-8/TNPCRC_06.ome.tif metadata/73-8-channel-metadata.csv 65.8
CRC08 data/73-8/TNPCRC_08.ome.tif metadata/73-8-channel-metadata.csv 75.1
CRC09 data/73-8/TNPCRC_09.ome.tif metadata/73-8-channel-metadata.csv 81.0
CRC10 data/73-8/TNPCRC_10.ome.tif metadata/73-8-channel-metadata.csv 103.0
CRC11 data/73-8/TNPCRC_11.ome.tif metadata/73-8-channel-metadata.csv 84.3
CRC12 data/73-8/TNPCRC_12.ome.tif metadata/73-8-channel-metadata.csv 52.4
CRC13 data/73-8/TNPCRC_13.ome.tif metadata/73-8-channel-metadata.csv 78.5
CRC14 data/73-8/TNPCRC_14.ome.tif metadata/73-8-channel-metadata.csv 86.5
CRC15 data/73-8/TNPCRC_15.ome.tif metadata/73-8-channel-metadata.csv 86.0
CRC16 data/73-8/TNPCRC_16.ome.tif metadata/73-8-channel-metadata.csv 105.8
CRC17 data/73-8/TNPCRC_17.ome.tif metadata/73-8-channel-metadata.csv 137.5

Tumor-focused CyCIF panel

Patient Data filename Metadata filename File size (GB)
CRC02 data/73-9/TNPCRC_01.ome.tif metadata/73-9-channel-metadata.csv 100.1
CRC03 data/73-9/TNPCRC_02.ome.tif metadata/73-9-channel-metadata.csv 67.4
CRC04 data/73-9/TNPCRC_03.ome.tif metadata/73-9-channel-metadata.csv 104.8
CRC05 data/73-9/TNPCRC_04.ome.tif metadata/73-9-channel-metadata.csv 69.4
CRC06 data/73-9/TNPCRC_05.ome.tif metadata/73-9-channel-metadata.csv 125.5
CRC07 data/73-9/TNPCRC_06.ome.tif metadata/73-9-channel-metadata.csv 98.5
CRC08 data/73-9/TNPCRC_08.ome.tif metadata/73-9-channel-metadata.csv 90.6
CRC09 data/73-9/TNPCRC_09.ome.tif metadata/73-9-channel-metadata.csv 87.8
CRC10 data/73-9/TNPCRC_10.ome.tif metadata/73-9-channel-metadata.csv 111.6
CRC11 data/73-9/TNPCRC_11.ome.tif metadata/73-9-channel-metadata.csv 104.8
CRC12 data/73-9/TNPCRC_12.ome.tif metadata/73-9-channel-metadata.csv 59.3
CRC13 data/73-9/TNPCRC_13.ome.tif metadata/73-9-channel-metadata.csv 97.3
CRC14 data/73-9/TNPCRC_14.ome.tif metadata/73-9-channel-metadata.csv 98.5
CRC15 data/73-9/TNPCRC_15.ome.tif metadata/73-9-channel-metadata.csv 104.0
CRC16 data/73-9/TNPCRC_16.ome.tif metadata/73-9-channel-metadata.csv 120.4
CRC17 data/73-9/TNPCRC_17.ome.tif metadata/73-9-channel-metadata.csv 147.4

Access Spatial feature tables (main CyCIF panel; CRC1-17)


Access Spatial feature tables (CRC01 additional panel)


Single-cell sequencing data & GeoMX count tables

The single-cell sequncing data of this study could be found here:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166319

The GeoMX data (count tables) could be download from here:

https://github.com/labsyspharm/CRC_atlas_2022/tree/main/GeoMX_data


FUNDING

This work was supported by NIH grants U54-CA225088 (PKS, SS), U2C-CA233280 (PKS, SS), U2C-CA233262 (PKS, SS), U2C-CA233291 (CNH, KSL), R01-DK103831 (CNH, KSL), NIH training grant T32-GM007748 (SC), and the Ludwig Center at Harvard (PKS, SS). All HTAN consortium members are named at humantumoratlas.org. Development of computational methods was supported by the Ludwig Cancer Research, by a Team Science Grant from the Gray Foundation, and by the David Liposarcoma Research Initiative. We thank Dana-Farber/Harvard Cancer Center for the use of the Specialized Histopathology Core, which provided histopathology services supported by P30-CA06516.