-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
81 lines (68 loc) · 2.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# -*- coding: utf-8 -*-
import torch
import argparse
from torch import cuda
from transformers import BartTokenizerFast
from model import MultiFigurativeGeneration
from tokenization_mflag import MFlagTokenizerFast
device = 'cuda' if cuda.is_available() else 'cpu'
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'-bs', default=64, type=int, help='the batch size')
parser.add_argument(
'-src_form', default=0, type=str, help='source form')
parser.add_argument(
'-tgt_form', default=0, type=str, help='target form')
parser.add_argument(
'-nb', default=5, type=int, help='beam search number')
parser.add_argument(
'-seed', default=42, type=int, help='the random seed')
parser.add_argument(
'-length', default=60, type=int, help='the max length')
parser.add_argument(
'-dataset', default='0', type=str, help='dataset name')
opt = parser.parse_args()
torch.manual_seed(opt.seed)
tokenizer = MFlagTokenizerFast.from_pretrained('checkpoints/mFLAG')
fig_id = torch.tensor(tokenizer.encode('<{}>'.format(opt.tgt_form),
add_special_tokens=False)).to(device)
model = MultiFigurativeGeneration.from_pretrained('checkpoints/mFLAG')
model.to(device).eval()
src_seq = []
if opt.src_form != 'literal':
inp_dir = 'data/{}/test_{}.1'.format(opt.dataset, opt.src_form)
else:
inp_dir = 'data/{}/test_{}.0'.format(opt.dataset, opt.tgt_form)
with open(inp_dir, 'r') as fin:
for line in fin.readlines():
src_seq.append('<{}>'.format(opt.src_form) + line.strip())
with open('./data/outputs/bart_{}_{}'.format(
opt.src_form, opt.tgt_form), 'w') as fout:
for idx in range(0, len(src_seq), opt.bs):
inp = tokenizer.batch_encode_plus(src_seq[idx: idx + opt.bs],
padding=True, return_tensors='pt')
src = inp['input_ids'].to(device)[:, 1:]
mask = inp['attention_mask'].to(device)[:, 1:]
decoder_input_ids = fig_id.expand((src.size(0), len(fig_id)))
outs = model.generate(
input_ids=src,
attention_mask=mask,
num_beams=opt.nb,
fig_ids=decoder_input_ids,
max_length=opt.length,
forced_bos_token_id=fig_id.item())
for x, y in zip(outs, src_seq[idx:idx + opt.bs]):
text = tokenizer.decode(
x.tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
try:
text = text.split('<{}>'.format(opt.tgt_form))[-1]
except:
text = text
if len(text.strip()) == 0:
text = y
fout.write(text.strip() + '\n')
if __name__ == "__main__":
main()