-
Notifications
You must be signed in to change notification settings - Fork 1
/
user_proj_example.v
172 lines (155 loc) · 4.73 KB
/
user_proj_example.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oen,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb
);
wire clk;
wire rst;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
wire [31:0] rdata;
wire [31:0] wdata;
wire [BITS-1:0] count;
wire valid;
wire [3:0] wstrb;
wire [31:0] la_write;
// WB MI A
assign valid = wbs_cyc_i && wbs_stb_i;
assign wstrb = wbs_sel_i & {4{wbs_we_i}};
assign wbs_dat_o = rdata;
assign wdata = wbs_dat_i;
// IO
assign io_out = count;
assign io_oeb = {(`MPRJ_IO_PADS-1){rst}};
// LA
assign la_data_out = {{(127-BITS){1'b0}}, count};
// Assuming LA probes [63:32] are for controlling the count register
assign la_write = ~la_oen[63:32] & ~{BITS{valid}};
// Assuming LA probes [65:64] are for controlling the count clk & reset
assign clk = (~la_oen[64]) ? la_data_in[64]: wb_clk_i;
assign rst = (~la_oen[65]) ? la_data_in[65]: wb_rst_i;
counter #(
.BITS(BITS)
) counter(
.clk(clk),
.reset(rst),
.ready(wbs_ack_o),
.valid(valid),
.rdata(rdata),
.wdata(wbs_dat_i),
.wstrb(wstrb),
.la_write(la_write),
.la_input(la_data_in[63:32]),
.count(count)
);
endmodule
module counter #(
parameter BITS = 32
)(
input clk,
input reset,
input valid,
input [3:0] wstrb,
input [BITS-1:0] wdata,
input [BITS-1:0] la_write,
input [BITS-1:0] la_input,
output ready,
output [BITS-1:0] rdata,
output [BITS-1:0] count
);
reg ready;
reg [BITS-1:0] count;
reg [BITS-1:0] rdata;
always @(posedge clk) begin
if (reset) begin
count <= 0;
ready <= 0;
end else begin
ready <= 1'b0;
if (~|la_write) begin
count <= count + 1;
end
if (valid && !ready) begin
ready <= 1'b1;
rdata <= count;
if (wstrb[0]) count[7:0] <= wdata[7:0];
if (wstrb[1]) count[15:8] <= wdata[15:8];
if (wstrb[2]) count[23:16] <= wdata[23:16];
if (wstrb[3]) count[31:24] <= wdata[31:24];
end
end
end
genvar i;
generate
for(i=0; i<BITS; i=i+1) begin
always @(posedge clk) begin
if (la_write[i]) count[i] <= la_input[i];
end
end
endgenerate
endmodule
`default_nettype wire