-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathLstmUnit.py
48 lines (37 loc) · 1.75 KB
/
LstmUnit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
import pickle
class LstmUnit(object):
def __init__(self, hidden_size, input_size, scope_name):
self.hidden_size = hidden_size
self.input_size = input_size
self.scope_name = scope_name
self.params = {}
with tf.variable_scope(scope_name):
self.W = tf.get_variable('W', [self.input_size+self.hidden_size, 4*self.hidden_size])
self.b = tf.get_variable('b', [4*self.hidden_size], initializer=tf.zeros_initializer(), dtype=tf.float32)
self.params.update({'W':self.W, 'b':self.b})
def __call__(self, x, s, finished = None):
h_prev, c_prev = s
x = tf.concat([x, h_prev], 1)
i,j,f,o = tf.split(tf.nn.xw_plus_b(x, self.W, self.b), 4, 1)
# Final Memory cell
c = tf.sigmoid(f+1.0) * c_prev + tf.sigmoid(i) * tf.tanh(j)
h = tf.sigmoid(o) * tf.tanh(c)
out, state = h, (h, c)
if finished is not None:
out = tf.where(finished, tf.zeros_like(h), h)
state = (tf.where(finished, h_prev, h), tf.where(finished, c_prev, c))
#out = tf.multiply(1 - finished, h)
#state = (tf.multiply(1 - finished, h) + tf.multiply(finished, h_prev),
# tf.multiply(1 - finished, c) + tf.multiply(finished, c_prev))
return out, state
def save(self, path):
param_values = {}
for param in self.params:
param_values[param] = self.params[param].eval()
with open(path, 'wb') as f:
pickle.dump(param_values, f, True)
def load(self, path):
param_values = pickle.load(open(path, 'rb'))
for param in param_values:
self.params[param].load(param_values[param])