-
Notifications
You must be signed in to change notification settings - Fork 4
/
StaSigProc.tex
957 lines (749 loc) · 45.3 KB
/
StaSigProc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% LaTeX4EI Template for Cheat Sheets Version 1.0
%
% Authors: Emanuel Regnath, Martin Zellner
% Contact: info@latex4ei.de
% Encode: UTF-8, tabwidth = 4, newline = LF
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% ======================================================================
% Document Settings
% ======================================================================
% possible options: color/nocolor, english/german, threecolumn
% defaults: color, english
\documentclass[english]{latex4ei/latex4ei_sheet}
% set document information
\title{Statistical Signal\\ Processing}
\author{LaTeX4EI} % optional, delete if unchanged
\myemail{info@latex4ei.de} % optional, delete if unchanged
\mywebsite{www.latex4ei.de} % optional, delete if unchanged
\let\T\relax
\DeclareMathOperator{\T}{\textsf{\textit{T}}} % Zufallsvariable X
\DeclareMathOperator{\Bias}{Bias} % Zufallsvariable X
\DeclareMathOperator{\argmax}{argmax}
\DeclareMathOperator{\rang}{rang}
\renewcommand{\vec}[1]{\underline{\boldsymbol{#1}}}
%\renewcommand{\vec}[1]{\boldsymbol{#1}}
\newcommand{\x}{\textit{x}}
\newcommand{\vx}{\underline{\textbf{\textit{x}}}}
\newcommand{\VX}{\underline{\textbf{\textit{X}}}}
\newcommand{\y}{\textit{y}}
\newcommand{\vy}{\underline{\textbf{\textit{y}}}}
\newcommand{\VY}{\underline{\textbf{\textit{Y}}}}
\newcommand{\VA}{\underline{\textit{A}}}
\newcommand{\A}{\textit{A}}
\newcommand{\va}{\underline{\textbf{\textit{a}}}}
\newcommand{\VB}{\underline{\textit{B}}}
% ======================================================================
% Begin
% ======================================================================
\begin{document}
\IfFileExists{git.id}{\input{git.id}}{}
\ifdefined\GitRevision\mydate{\GitNiceDate\ (git \GitRevision)}\fi
% Title
% ----------------------------------------------------------------------
\maketitle % requires ./img/Logo.pdf
\begin{symbolbox}
i.i.d: independently identically distributed
\end{symbolbox}
% Section
% ----------------------------------------------------------------------
\section{Math}
% ======================================================================
\begin{sectionbox}
\begin{tabular}{@{}llll}
$\pi \approx \num{3,14159}$ & $e \approx \num{2,71828}$ & $\sqrt{2} \approx \num{1,414}$ & $\sqrt{3} \approx \num{1,732}$ \\
\end{tabular}
\textbf{Binome, Trinome}\\
$(a\pm b)^2 = a^2 \pm 2ab + b^2$ \hfill $a^2 - b^2 = (a-b)(a+b)$\\
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$\\
$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$
\\[0.5em]
\textbf{Folgen und Reihen}\\
$\underset{\text{Aritmetrische Summenformel}}{\sum \limits_{k=1}^{n} k = \frac{n (n+1)}{2}}$ \quad $\underset{\text{Geometrische Summenformel}}{\sum \limits_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1-q}}$ \quad $\underset{\text{Exponentialreihe}}{\sum\limits_{n = 0}^{\infty} \frac{\cx z^n}{n!} = e^{\cx z}}$\\
\\[0.5em]
\textbf{Mittelwerte} \quad ($\sum$ von $i$ bis $N$) \hfill {\small (Median: Mitte einer geordneten Liste)}\\
\begin{tabular*}{\columnwidth}{@{\extracolsep\fill}l@{\quad\ $\ge$}l@{\quad\ $\ge$}l}
$\underset{\text{Arithmetisches}}{\ol x_{\ir{ar}} = \frac{1}{N} \sum x_i}$ & $\underset{\text{Geometrisches Mittel}}{\ol x_{\ir{geo}} = \sqrt[N]{ \prod x_i }}$ & $\underset{\text{Harmonisches}}{\ol x_{\ir hm} = }\frac{N}{\sum \frac{1}{x_i}}$\\
\end{tabular*}
\\[0.5em]
\textbf{Ungleichungen:} \hfill Bernoulli-Ungleichung: $(1+x)^n \ge 1+nx$\\
$\underset{\text{Dreiecksungleichung}}{\big|\! \abs{x}- \abs{y}\!\big| \le \abs{x \pm y} \le \abs{x} + \abs{y}}$ \hfill
$\underset{\text{Cauchy-Schwarz-Ungleichung}}{\left| \vec x^\top \bdot \vec y \right| \le \| \vec x\| \cdot \| \vec y\|}$
\\[0.5em]
\textbf{Mengen:} De Morgan: $\overline{A \capdot B} = \overline{A} \cupplus \overline{B}$ \hfill $\overline{A \cupplus B} = \overline{A} \capdot \overline{B}$
\end{sectionbox}
\begin{sectionbox}
\subsection[Exp. und Log.]{Exp. und Log.\ \ $e^x := \lim\limits_{n \rightarrow \infty} \left( 1 + \frac{x}{n} \right)^n \hfill e \approx 2,71828$}
\begin{tabular*}{\columnwidth}{@{\extracolsep\fill}lll@{}}
$a^x = e^{x \ln a}$ & $\log_a x = \frac{\ln x}{\ln a}$ & $\ln x \le x -1$\\
$\ln(x^{a}) = a \ln(x)$ & $\ln(\frac{x}{a}) = \ln x - \ln a$ & $\log(1) = 0$\\
\end{tabular*}
\end{sectionbox}
\begin{sectionbox}
\subsection[Matrizen]{Matrizen $\ma A \in\mathbb{K}^{m \times n}$}
$\ma A=(a_{ij}) \in \mathbb K^{m\times n}$ hat $m$ Zeilen (Index $i$) und $n$ Spalten (Index $j$)
\begin{tabular*}{\columnwidth}{ll}
$(\ma A + \ma B)^\top = \ma A^\top + \ma B^\top$ & $(\ma A \cdot \ma B)^\top = \ma B^\top \cdot \ma A^\top$\\
${(\ma A^\top)}^{-1} = {(\ma A^{-1})}^\top$ & $(\ma A \cdot \ma B)^{-1} = \ma B^{-1}\ma A^{-1}$
\end{tabular*}
$\dim \mathbb K = n = \rang\ma A + \dim\ker\ma A$ \qquad $\rang\ma A = \rang\ma A^\top$
\subsubsection{Quadratische Matrizen $A \in \mathbb{K}^{n \times n}$}
regulär/invertierbar/nicht-singulär $\Leftrightarrow \det (\ma A) \ne 0 \Leftrightarrow \rang\ma A = n$\\
singulär/nicht-invertierbar $\Leftrightarrow \det (\ma A) = 0 \Leftrightarrow \rang\ma A \ne n$\\
orthogonal $\Leftrightarrow \ma A^\top=\ma A^{-1} \Ra \det(\ma A) = \pm 1$\\
symmetrisch: $\ma A=\ma A^\top$ \qquad schiefsymmetrisch: $\ma A=-\ma A^\top$
%\item hermitsch: $\ma A=\overline{\ma A}^\top$, unitär:$\ma A^{-1} = \overline{\ma A}^\top$
\subsubsection[Determinante]{Determinante von $\ma A\in \mathbb K^{n\times n}$: $\det(\ma A)=|\ma A|$}
$\det\mat{ \ma A & \ma 0 \\ \ma C& \ma D }= \det\mat{ \ma A & \ma B \\ \ma 0 & \ma D } = \det(\ma A)\det(\ma D)$ \\
\begin{tabular*}{\columnwidth}{@{\extracolsep\fill}ll}
$\det(\ma A) = \det(\ma A^T)$ & $\det(\ma A^{-1}) = \det(\ma A)^{-1}$
\end{tabular*}
$\det(\ma A\ma B) = \det(\ma A)\det(\ma B) = \det(\ma B)\det(\ma A) = \det(\ma B\ma A)$\\
Hat $\ma A$ 2 linear abhäng. Zeilen/Spalten $\Rightarrow |\ma A|=0$ \\
\subsubsection{Eigenwerte (EW) $\lambda$ und Eigenvektoren (EV) $\underline v$}
\begin{emphbox}
\large $\ma A \vec v = \lambda \vec v$ \quad\ $\det \ma A = \prod \lambda_i$ \quad\ $\Sp \ma A = \sum a_{ii} = \sum \lambda_i$
\end{emphbox}
Eigenwerte: $\det(\ma A - \lambda \ma 1) = 0$ Eigenvektoren: $\ker(\ma A - \lambda_i \ma 1) = \vec v_i$\\
EW von Dreieck/Diagonal Matrizen sind die Elem. der Hauptdiagonale.
\subsubsection{Spezialfall $2 \times 2$ Matrix $A$}
\parbox{3cm}{ $\det(\ma A) = ad-bc$ \\ $\Sp(\ma A) = a+d$ } $\mat{a & b\\ c & d}^{-1} = \frac{1}{\det \ma A} \mat{d & -b\\ -c& a}$\\
$\lambda_{1/2} = \frac{\Sp \ma A}{2} \pm \sqrt{ \left( \frac{\mathrm{sp} \ma A}{2} \right)^2 - \det \ma A }$
\subsubsection{Differentiation}
$\frac{\partial \vec x^\top \vec y}{\partial \vec x} = \frac{\partial \vec y^\top \vec x}{\partial \vec x} = \vec y$\qquad
$\frac{\partial \vec x^\top \ma A \vec x}{\partial \vec x} = (\ma A + \ma A^\top)\vec x$ \\
$\frac{\partial \vec x^\top \ma A \vec y}{\partial \ma A} = \vec x \vec y^\top$ \qquad $\frac{\partial \det( \ma B \ma A \ma C )}{\partial \ma A} = \det(\ma B \ma A \ma C) \left( \ma A^{-1} \right)^\top$
\end{sectionbox}
\begin{sectionbox}
\subsubsection{Ableitungsregeln ($\forall \lambda, \mu \in \mathbb R$)}
\begin{tabular}{@{}l@{\quad}ll@{}}
Linearität: & $(\lambda f + \mu g)' (x) = \lambda f'(x) + \mu g'(x_0)$ \\
Produkt: & $(f \cdot g)'(x) = f'(x) g(x) + f(x) g'(x)$\\
Quotient: & $\left(\frac{f}{g}\right)' (x) = \frac{g(x)f'(x) -f(x) g'(x)}{g(x)^2}$ \quad $\left(\frac{\text{NAZ}-\text{ZAN}}{\text{N}^2}\right)$\\
Kettenregel & $\left( f\bigl(g(x)\bigr) \right)' = f'\bigl(g(x)\bigr) g'(x)$\\
\end{tabular}
\end{sectionbox}
\begin{sectionbox}
\subsection{Integrale $\int e^x\mathrm dx = e^x = (e^x)'$}
%$\int_a^b f(x) \mathrm dx = F(b) - F(a)$\\
\begin{tabular*}{\columnwidth}{ll}
Partielle Integration: & $\int uw'=uw-\int u'w$\\
Substitution: & $\int f(g(x)) g'(x)\diff x=\int f(t)\diff t$
\end{tabular*}
\begin{tablebox}{@{\hspace{5mm}}c@{\extracolsep\fill}c@{\extracolsep\fill}c@{\hspace{5mm}}}
$F(x) - C$ & $f(x)$ & $f'(x)$ \\ \cmrule
$\frac{1}{q+1}x^{q+1}$ & $x^q$ & $qx^{q-1}$ \\[1em]
\raisebox{-0.2em}{$\frac{2\sqrt{ax^3}}{3}$} & $\sqrt{ax}$ & \raisebox{0.2em}{$\frac{a}{2\sqrt{ax}}$}\\
$x\ln(ax) -x$ & $\ln(ax)$ & $\textstyle \frac{1}{x}$\\
$\frac{1}{a^2} e^{ax}(ax- 1)$ & $x \cdot e^{ax}$ & $e^{ax}(ax+1)$ \\
$\frac{a^x}{\ln(a)}$ & $a^x$ & $a^x \ln(a)$ \\
$-\cos(x)$ & $\sin(x)$ & $\cos(x)$\\
$\cosh(x)$ & $\sinh(x)$ & $\cosh(x)$\\
$-\ln |\cos(x)|$ & $\tan(x)$ & $\frac{1}{\cos^2(x)}$ \\
\end{tablebox}
\begin{tabular*}{\columnwidth}{ll}
\multicolumn{2}{c}{$\int e^{at} \sin(bt) \diff t = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$}\\
$\int \frac{\diff t}{\sqrt{at+b}} = \frac{2 \sqrt{at+b}}{a}$ & $\int t^2 e^{at} \diff t = \frac{(ax-1)^2+1}{a^3} e^{at}$\\
$\int t e^{at} \diff t = \frac{at-1}{a^2} e^{at}$ & $\int x e^{ax^2} \diff x = \frac{1}{2a} e^{ax^2}$\\
\end{tabular*}
\subsubsection{Volumen und Oberfläche von Rotationskörpern um $x$-Achse}
$V = \pi \int_a^b f(x)^2 \mathrm dx$ \qquad \quad $O = 2 \pi \int_a^b f(x) \sqrt{1 + f'(x)^2} \mathrm dx$
\end{sectionbox}
% Section
% ----------------------------------------------------------------------
\section{Probability Theory Basics}
% ======================================================================
\begin{sectionbox}
\subsection{Kombinatorik}
Mögliche Variationen/Kombinationen um $k$ Elemente von maximal $n$ Elementen zu wählen bzw. $k$ Elemente auf $n$ Felder zu verteilen:\\
\begin{tablebox}{l|cc}
& \large Mit Reihenfolge & \large Reihenfolge egal\\ \cmrule
%& ungleiche Elemente & gleiche Elemente \\
\large Mit Wiederholung & \large $n^k$ & \Large $\binom{n+k-1}{k}$\\[0.2em]
\large Ohne Wiederholung & \Large $\frac{n!}{(n-k)!}$ & \Large $\binom nk$\\
\end{tablebox}
Permutation von $n$ mit jeweils $k$ gleichen Elementen: $\frac{n!}{k_1 ! \cdot k_2 ! \cdot ...}$\\
Binomialkoeffizient $\binom nk = \binom n{n-k} = \frac{n!}{k! \cdot (n-k)!}$\\
$\binom n0 = 1$ \quad $\binom n1 = n$ \quad $\binom 42 = 6$ \quad $\binom 52 = 10$ \quad $\binom 62 = 15$
\end{sectionbox}
\begin{sectionbox}
\subsection{Der Wahrscheinlichkeitsraum $(\Omega,\mathbb F,\P)$}
\begin{tablebox}{lll}
\textbf{Ergebnismenge} & $\Omega = \eset{\omega_1,\omega_2, ...}$ & Ergebnis $\omega_j \in \Omega$\\[0.5em]
\textbf{Ereignisalgebra} & $\mathbb F = \eset{A_1,A_2,...}$ & Ereignis $A_i \subseteq \Omega$\\
\textbf{Wahrscheinlichkeitsmaß} & $\P:\mathbb F \ra [0,1]$ & $\P(A) = \frac{|A|}{|\Omega|}$\\
\end{tablebox}
\end{sectionbox}
\begin{sectionbox}
\subsection{Wahrscheinlichkeitsmaß $\P$}
$\P(A) = \frac{|A|}{|\Omega|}$ \hfill $\P(A \cup B) = \P(A) + \P(B) - \P(A \cap B)$\\
\subsubsection{Axiome von Kolmogorow}
\begin{tabular}{ll}
Nichtnegativität: & $\P(A) \geq 0 \Ra \P:\mathbb F \mapsto [0,1]$ \\
Normiertheit: & $\P(\Omega) = 1$ \\
Additivität: & $\P\left(\bigcup\limits_{i=1}^{\infty} A_i \right) = \sum\limits_{i=1}^{\infty} \P(A_i)$, \\
& wenn $A_i \cap A_j = \emptyset$, $\forall i \neq j$ \\
\end{tabular}
\end{sectionbox}
\begin{sectionbox}
\subsection{Bedingte Wahrscheinlichkeit}
Bedingte Wahrscheinlichkeit für $A$ falls $B$ bereits eingetreten ist:\\
$\P_B(A) = \P(A|B) = \frac{\P(A \cap B)}{\P(B)}$ %\qquad\quad $\P(B|A) = \P(A|B) \frac{\P(B)}{\P(A)}$\\
\subsubsection{Totale Wahrscheinlichkeit und Satz von Bayes}
Es muss gelten: $\bigcup\limits_{i \in I} B_i = \Omega$ für $B_i \cap B_j = \emptyset$, $\forall i \neq j$ \\
\begin{tabular}{ll}
Totale Wahrscheinlichkeit: & $\P(A) = \sum\limits_{i \in I} \P(A|B_i)\P(B_i)$\\
Satz von Bayes: & $\P(B_k | A) = \frac{\P(A | B_k)\P(B_k)}{\sum\limits_{i \in I} \P(A|B_i) \P(B_i)}$\\
\end{tabular}
\textbf{Multiplikationssatz:} $\P(A \cap B) = \P(A|B)\P(B) = \P(B|A)\P(A)$
\end{sectionbox}
\begin{sectionbox}
\subsection{Zufallsvariable}
$\X : \Omega \mapsto \Omega'$ ist Zufallsvariable, wenn für jedes Ereignis $A' \in \F'$ \\
im Bildraum ein Ereignis $A$ im Urbildraum $\F$ existiert, \\
sodass $\left\{\omega \in \Omega|\X(\omega) \in A'\right\} \in \F$
\end{sectionbox}
\begin{sectionbox}
\subsection{Distribution}
\begin{tablebox}{lll}
Bezeichnung & Abk. & Zusammenhang\\ \cmrule
Wahrscheinlichkeitsdichte & pdf & $f_{\X}(x) = \frac{\diff F_{\X}(x)}{\diff x}$\\
Kumulative Verteilungsfkt. & cdf & $F_{\X}(x) = \int\limits_{-\infty}^{x}{f_{\X}(\xi)\diff\xi}$ \\
\end{tablebox}
Joint CDF: $F_{\X,\Y}(x,y) = \P(\{\X \le x, \Y \le y\})$
\end{sectionbox}
\begin{sectionbox}
\subsection[Relations]{Relations between $f_{\X}(x), f_{\X,\Y}(x,y), f_{\X|\Y}(x|y)$}
\begin{emphbox}
$\underset{\text{Joint PDF}}{f_{\X,\Y}(x,y)} = f_{\X|\Y}(x,y) f_{\Y}(y) = f_{\Y|\X}(y,x) f_{\X}(x)$\\
$\underbrace{\int\limits_{-\infty}^{\infty} f_{\X,\Y}(x,ξ) \diff ξ}_{\text{Marginalization}} = \underbrace{\int\limits_{-\infty}^{\infty} f_{\X|\Y}(x,ξ)f_{\Y}(ξ) \diff ξ}_{\text{Total Probability}} = f_{\X}(x)$
\end{emphbox}
\end{sectionbox}
\begin{sectionbox}
\subsection{Bedingte Zufallsvariablen}
\begin{tabular}{ll}
Ereignis A gegeben: & $F_{\X|A}(x|A) = \P\left(\eset{\X \le x} | A\right)$\\
ZV $\Y$ gegeben: & $F_{\X|\Y}(x|y)= \P\left(\eset{\X \le x} | \eset{\Y = y}\right)$\\
& $p_{\X|\Y}(x|y) = \frac{p_{\X,\Y}(x,y)}{p_{\Y}(y)}$\\
& $f_{\X|\Y}(x|y) = \frac{f_{\X,\Y}(x,y)}{f_{\Y}(y)} = \frac{\diff F_{X|Y}(x|y)}{\diff x}$\\
\end{tabular}
\end{sectionbox}
\begin{sectionbox}
\subsection{Unabhängigkeit von Zufallsvariablen}
$\X_1,\shdots,\X_n$ sind stochastisch unabhängig, wenn für jedes $\vec{x} \in \R^n$ gilt:\\
\begin{tabular}{l}
$F_{\X_1,\shdots,\X_n}(x_1,\shdots,x_n) = \prod\limits_{i=1}^{n}{F_{\X_i}(x_i)}$\\
$p_{\X_1,\shdots,\X_n}(x_1,\shdots,x_n) = \prod\limits_{i=1}^{n}{p_{\X_i}(x_i)}$\\
$f_{\X_1,\shdots,\X_n}(x_1,\shdots,x_n) = \prod\limits_{i=1}^{n}{f_{\X_i}(x_i)}$\\
\end{tabular}
\end{sectionbox}
% ----------------------------------------------------------------------
\section{Common Distributions}
% ======================================================================
\begin{sectionbox}
\subsection{Binomialverteilung $\mathcal B(n,p)$ mit $p \in [0,1], n \in \N$}
Folge von $n$ Bernoulli-Experimenten\\
$p$: Wahrscheinlichkeit für Erfolg \qquad $k$: Anzahl der Erfolge \\
\\
$p_{\X}(k) = B_{n,p}(k) = \begin{cases}
\binom{n}{k} p^k (1 - p)^{n - k} & k \in \left\{0,\dots,n\right\} \\
0 & \text{sonst} \\
\end{cases}$
\\
\everymath{\displaystyle}
\begin{tablebox}{l@{\extracolsep\fill}ll}
$\underset{\text{Erwartungswert}}{\E[\X] =n p}\quad $ & $\underset{\text{Varianz}}{\Var[\X] =np (1-p)}$ & $\underset{\text{Wahrscheinlichkeitserz. Funktion}}{G_X (z) = (pz + 1 -p)^n}$\\
\end{tablebox}
\end{sectionbox}
\begin{sectionbox}
\subsection{Normalverteilung}
\parbox{3.3cm}{\emph{WDF/PDF:} \\ \includegraphics[width = 3.3cm]{./img/normal_pdf.pdf}}
\parbox{3.3cm}{\emph{KVF/CDF:} \\ \includegraphics[width = 3.3cm]{./img/normal_cdf.pdf}}
\textbf{WDF: }
\boxed{f_X (x) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}} \quad x \in \mathbb R} \qquad \parbox{1.2cm}{$\mu \in \mathbb R$ \\[0.5em] $\sigma > 0$}
\begin{tablebox}{lll}
\everymath{\displaystyle}
$\underset{\text{Erwartungswert}}{\E(\X) = \mu}$ & $\underset{\text{Varianz}}{\Var(\X) =\sigma^2}$ & $\underset{\text{Charakt. Funktion}}{\varphi_{\X}(\omega) = e^{j\omega\mu-\frac{\omega^2\sigma^2}{2}}}$\\
\end{tablebox} \everymath{\textstyle}
\end{sectionbox}
\begin{sectionbox}
\subsection{Sonstiges}
\textbf{Gammadistribution} $Γ(α,β)$: $\E[\X] = \frac{α}{β}$\\
\textbf{Exponential:} $f(x,λ) = λ e^{-λx}$ \quad $\E[\X] = λ^{-1}$ \quad $\Var[\X] = λ^{-2}$
\end{sectionbox}
% ----------------------------------------------------------------------
\section{Wichtige Parameter}
% ======================================================================
\begin{sectionbox}
\subsection{Erwartungswert (1. zentrales Moment)}
gibt den mittleren Wert einer Zufallsvariablen an
\begin{emphbox}
$μ_{\X} = \E [\X] = \underset{\text{diskrete} \X:\Omega \ra \Omega'}{\sum\limits_{x \in \Omega'} x \cdot \P_{\X}(x)} \quad \stackrel{\wedge}{=}\quad \underset{\text{stetige} \X: \Omega \ra \R}{\int \limits_{\R} x \cdot f_{\X} (x) \diff x}$
\end{emphbox}
$\E[\alpha \X + \beta \Y] = \alpha \E [\X] + \beta \E[\Y]$ \hfill $\X \le \Y \Ra \E[\X] \le \E[\Y]$\\
$\E[X^2] = \Var[X] + \E[X]^2$ \\
$\E[\X\Y] = \E[\X] \E[\Y]$, falls $\X$ und $\Y$ stochastisch unabhängig\\
Umkehrung nicht möglichich: Unkorrelliertheit $\not \Ra$ Stoch. Unabhängig! \\
\subsubsection{Für Funktionen von Zufallsvariablen $g(x)$}
$\E[g(\X)] = \sum \limits_{x \in \Omega'} g(x) \P_{\X} (x)\quad \stackrel{\wedge}{=}\quad \int \limits_{\R} g(x) f_X (x) \diff x$
\end{sectionbox}
\begin{sectionbox}
\subsection{Varianz (2. zentrales Moment)}
ist ein Maß für die Stärke der Abweichung vom Erwartungswert
\begin{emphbox}
$σ_{\X}^2 = \Var [X] = \E \big[(\X - \E[\X])^2\big] = \E[\X^2] - \E[\X]^2$
\end{emphbox}
$\Var [ \alpha \X + \beta] = \alpha^2 \Var [\X]$ \hfill $\Var [\X] = \Cov [\X,\X]$\\[0.5em]
$\Var \left[\sum \limits_{i=1}^n \X_i \right] = \sum \limits_{i=1}^{n} \Var [\X_i] + \sum\limits_{j \not= i} \Cov[\X_i, \X_j]$\\
\textbf{Standard Abweichung:} $\sigma = \sqrt{\Var[\X]}$
\end{sectionbox}
\begin{sectionbox}
\subsection{Kovarianz}
Maß für den linearen Zusammenhang zweier Variablen
\begin{emphbox}
$\Cov [\X,\Y] = \E[(\X- \E[\X])(\Y - \E[\Y])^\top] = $\\[0.5em]
$ = \E [\X\Y^\top] - \E[\X] \E[\Y]^\top = \Cov[\Y, \X]$
\end{emphbox}
$\Cov [\alpha \X + \beta, \gamma \Y + \delta] = \alpha \gamma \Cov [\X, \Y]$ \\
$\Cov [ \X + \textit U, \Y + \textit V] = \Cov [\X, \Y] + \Cov [\X, \textit V] + \Cov [\textit U, \Y] + \Cov [\textit U, \textit V]$ \\
\subsubsection{Korrelation = standardisierte Kovarianz}
$\rho(\X,\Y) = \frac{\Cov[\X,\Y]}{\sqrt{\Var[\X] \cdot \Var[\Y]}} = \frac{C_{x,y}}{σ_x \cdot σ_y}$ \qquad $\rho(\X,\Y) ∈ [-1;1]$
\subsubsection[Kovarianzmatrix]{Kovarianzmatrix für $\vec z = (\vec x, \vec y)^\top$}
$\Cov[\vec z] = \ma C_{\vec z} = \mat{C_{\X} & C_{\X\!\Y} \\ C_{\X\!\Y} & C_{\Y}} = \mat{\Cov[\X,\X] & \Cov[\X,\Y] \\ \Cov[\Y,\X] & \Cov[\Y,\Y]}$\\
Immer symmetrisch: $C_{xy} = C_{yx}$! Für Matrizen: $\ma C_{\vec x \vec y} = \ma C_{\vec y \vec x}^\top$
\end{sectionbox}
% \begin{sectionbox}
% \subsection{Schiefe (3. zentrales Moment)}
% Maß für die Asymmetrie einer Wahrscheinlichkeitsverteilung.\\
% $v(\X) = \E\left[ \left( \frac{\X - \E[\X]}{\sqrt{\Var[\X]}} \right)^3 \right]$ \qquad \parbox{4cm}{$v(\X) < 0$: links schief/flacher \\ $v(\X) > 0$: rechts schief/flacher}
% \end{sectionbox}
% \begin{sectionbox}
% \subsection{Momente}
% \begin{tablebox}{ll}
% Erwartungswert & $\mu_{\X}(n) = E[\X_n]$\\
% Varianzfolge & $\sigma^2_{\X}(n) = Var[\X_n] = E[\X_n^2] - E[\X_n]^2$\\
% Autokorrelation & $r_{\X}(k,l) = E[\X_k \X_l]$\\
% Autokovarianzf. & $c_{\X}(k,l) = Cov[\X_k,\X_l]$ \newline $= r_{\X}(k,l) - \mu_{\X}(k) \mu_{\X}(l)$\\
% \end{tablebox}
% \end{sectionbox}
% Section
% ----------------------------------------------------------------------
\section{Estimation}
%
\begin{sectionbox}
\subsection{Estimation}
Statistic Estimation treats the problem of inferring underlying characteristics of unknown random
variables on the basis of observations of outputs of those random variables.
\begin{tablebox}{lll}
Sample Space $Ω$ & nonempty set of outputs of experiment\\
Sigma Algebra $\mathbb F \subseteq 2^Ω$ & set of subsets of outputs (events)\\
Probability $\P: \mathbb F \mapsto [0,1]$ & \\
Random Variable $\X: Ω \mapsto \mathbb X$ & mapped subsets of $Ω$\\
Observations: $x_1, \ldots, x_N$ & single values of $\X$\\
Observation Space $\mathbb X$ & possible observations of $\X$\\
Unknown parameter $θ ∈ Θ$ & parameter of propability function\\
Estimator $\T: \mathbb X \mapsto Θ$ & $\T(\X) = \hat{θ}$, finds $\hat{θ}$ from $\X$\\
\end{tablebox}
\begin{symbolbox}
unknown parm. $θ$ \qquad estimation of param. $\hat{θ}$\\
R.V. of param. $Θ$ \qquad estim. of R.V. of parm $\textit T(\X) = \hat {Θ}$
\end{symbolbox}
\end{sectionbox}
\begin{sectionbox}
\subsection{Quality Properties of Estimators}
Consistent: If $\lim\limits_{N \ra ∞} \T(x_1, \ldots, x_N) = θ$\\
Bias $\Bias(\T) := \E [\T(\X_1, \ldots, \X_N)] - θ$ \\
unbiased if $\Bias(\T)=0$ (biased estimators can provide better estimates than unbiased estimators.)\\
Variance $\Var[\T] := \E\left[ (\T − \E[\T])^2 \right]$
\end{sectionbox}
\begin{sectionbox}
\subsection{Mean Square Error (MSE)}
The MSE is an extension of the Variance $\Var[\T] := \E\left[ (\T − \E[\T])^2 \right]$:\\
\begin{emphbox}
MSE: $ε[\T] = \underset{=\E[(\hat{θ}-θ)^2]}{\E\left[(\T − θ)^2\right]} = \Var(\T) + (\mathrm{Bias}[\T])^2$
\end{emphbox}
If $Θ$ is also r.v. $\Ra$ mean over both (e.g. Bayes est.):\\
\textbf{Mean MSE:} $\E[(\T(\X)-Θ)^2] = \E\left[\E\left[(\T(\X) − Θ)^2|Θ=θ\right]\right]$
\subsubsection{Minimum Mean Square Error (MMSE)}
Minimizes mean square error: $\underset{\hat{θ}}{\arg\min} \E\left[(\hat{θ} − θ)^2\right]$\\
$\E\left[(\hat{θ} − θ)^2\right] = \E[θ^2] - 2\hat{θ} \E[θ] + \hat{θ}^2$\\
Solution: $\frac{\diff}{\diff \hat{θ}} \E\left[(\hat{θ} − θ)^2\right] \stackrel{!}{=} 0 = - 2\E[θ] + 2\hat{θ}$\quad$\Ra$ $\hat{θ}_{\ir MMSE}=\E[θ]$
\end{sectionbox}
\begin{sectionbox}
\subsection{Maximum Likelihood}
Given model $\{\mathbb X, \mathbb F, \P_θ ; θ ∈ Θ\}$, assume $\P_θ(\vec x)$ or $f_{\vec {\X}}(\vec x,θ)$ for observed data $\vec x$. Estimate parameter $θ$ so that the likelihood $L(\vec x,θ)$ or $L(θ|\X=\vec x)$ to obtain $\vec x$ is maximized.\\
\\
\textbf{Likelihood Function:} (Prob. for $θ$ given $\vec x$)\\
\begin{tabular}{@{}ll}
Discrete: & $L(x_1, \ldots, x_N; θ) = \P_θ(x_1, \ldots, x_N)$\\
Continuous: & $L(x_1, \ldots, x_N; θ) = f_{\X_1, ... , \X_N}(x_1, \ldots, x_N, θ)$\\
\end{tabular}
%Likelihood functions often in log scale \\
%Prob. dens. to get $\vec x$ with $θ$ is used as parameter\\
If $N$ observations are Identically Independently Distributed (i.i.d.):\\
$L(\vec x, θ) = \prod\limits_{i=1}^N \P_θ(x_i) = \prod\limits_{i=1}^N f_{\X_i}(x_i)$\\
\\
\textbf{ML Estimator} (Picks $θ$): $\T_{\ir ML} : \X \mapsto \underset{θ ∈ Θ}{\argmax} \{ L(\X,θ) \} = $\\
$= \underset{θ ∈ Θ}{\argmax} \{ \log L(\vec{\X},θ) \} \stackrel{\text{i.i.d.}}{=} \underset{θ ∈ Θ}{\argmax} \big\{ \sum \log L(x_i,θ) \big\}$\\
%If known $\vec x$ are fixed, $L$ only depends on $θ$\\
Find Maximum: $\frac{∂ L(\vec x,θ)}{∂ θ} = \left. \frac{\diff}{\diff θ} \log L(x; θ) \right|_{θ = \hat \theta} \stackrel{!}{=} 0$\\
Solve for $θ$ to obtain ML estimator function $\hat{θ}_{\ir ML}$\\
Check quality of estimator with MSE\\
Maximum-Likelihood Estimator is Asymptotically Efficient. However, there might be not enough samples and the likelihood function is often not known.
\end{sectionbox}
\begin{sectionbox}
\subsection{Uniformly Minimum Variance Unbiased (UMVU) Estimators (Best unbiased estimators)}
Best unbiased estimator: Lowest Variance of all estimators.\\
Fisher’s Information Inequality: Estimate lower bound of variance if
\begin{itemize}
\item $L(x,θ) > 0, ∀x,θ$
\item $L(x,θ)$ is diffable for $θ$
\item $\int_{\mathbb X} \frac{\partial}{\partial θ} L(x,θ) \diff x = \frac{\partial}{\partial θ} \int_{\mathbb X} L(x,θ) \diff x$\
\end{itemize}
\textbf{Score Function:}\\
$g(x, θ) = \frac{\partial}{\partial θ} \log L(x,θ) = \frac{\frac{\partial}{\partial θ} L(x,θ)}{L(x,θ)}$ \qquad $\E[g(x,θ)] = 0$\\
\textbf{Fischer Information:} \\
$I_{\ir F}(θ) := \Var[g(\X,θ)] = \E[g(x,θ)^2] = -\E\left[ \frac{\partial^2}{\partial θ^2} \log L(\X, θ) \right]$\\
\textbf{Cramér-Rao Lower Bound (CRB):}\quad (if $\T$ is unbiased)
\begin{emphbox}
$\Var[\T(\X)] \ge \left( \frac{\partial \E[\T(\X)]}{\partial θ}\right)^2 \frac{1}{I_{\ir F}(θ)}$ \qquad $\Var[\T(\X)] \ge \frac{1}{I_{\ir F}(θ)}$
\end{emphbox}
For $N$ i.i.d. observations: $I_{\ir F}^{(N)}(x,θ) = N \cdot I_{\ir F}^{(1)}(x,θ)$
\subsubsection{Exponential Models}
If $f_{\X}(x) = \frac{h(x)\exp\big(a(θ)t(x)\big)}{\exp(b(θ))}$ then $I_F(θ) = \frac{∂a(θ)}{∂θ} \frac{∂ E[t(\X)]}{∂ θ}$\\
\\
\textbf{Some Derivations:} (check in exam)\\
Uniformly: Not diffable $\Ra$ no $I_F(θ)$\\
Normal $\mathcal N(θ,σ^2)$: $g(x,θ) = \frac{(x-θ)}{σ^2}$ \quad $I_{\ir F}(θ) = \frac{1}{σ^2}$\\
Binomial $\mathcal B(θ,K)$: $g(x,θ) = \frac{x}{θ} - \frac{K-x}{1-θ}$ \quad $I_{\ir F}(θ)=\frac{K}{θ(1-θ)}$
\end{sectionbox}
\begin{sectionbox}
\subsection{Bayes Estimation (Conditional Mean)}
A Priori information about $θ$ is known as probability $f_Θ(θ; σ)$ with random variable $Θ$ and parameter $σ$.
Now the conditional pdf $f_{\X|Θ}(x,θ)$ is used to find $θ$ by minimizing the mean MSE instead of uniformly MSE.
Mean MSE for $Θ$: $\E\left[\E[(\textit T(\X)-Θ)^2|Θ=θ]\right]$
\textbf{Conditional Mean Estimator:}\\
$\textit T_{\ir CM}: x \mapsto \E[Θ|\X = x] = \int_{Θ} θ \cdot f_{Θ|\X}(θ|x)\diff θ$\\
Posterior $f_{Θ|\vec {\X}}(θ|\vec x) = \frac{f_{\vec {\X}|Θ}(\vec x) f_{θ}(θ)}{\int_{Θ} f_{\vec {\X},\xi}(\vec x, ξ) \diff ξ } = \frac{f_{\vec {\X}|θ}(\vec x) f_{θ}(θ)}{f_{\X}(x)}$\\[1em]
\textbf{Hint:} to calculate $f_{Θ|\vec {\X}}(θ|\vec x)$: Replace every factor not containing $θ$, such as $\frac{1}{f_{\X}(x)}$ with a factor $γ$ and determine $γ$ at the end such that $\int_{Θ} f_{Θ|\vec {\X}}(θ|\vec x) \diff θ = 1$\\
MMSE: $\E[\Var[\X|Θ=θ]]$\\
\\
\textbf{Multivariate Gaussian:} $\X,Θ \sim \mathcal N$ \quad $\Ra σ_{\X}^2 = σ^2_{\X|Θ=θ} + σ_Θ$\\
$\T_{\ir CM}: x \mapsto \E[Θ|\X = x] = \vec{μ}_Θ + \ma C_{Θ,\X} \ma C^{−1}_{\X} (\vec x − \vec {μ}_{\X} )$\\
MMSE:\\$\E\left[ \norm{\T_{\ir CM} − Θ}^2_2 \right] = \operatorname{tr}(\ma C_{θ|\X}) = \operatorname{tr}(\ma C_{Θ} - \ma C_{Θ,\X} \ma C^{−1}_{\X} \ma C_{\X,Θ})$\\
\\
\textbf{Orthogonality Principle:}\\
$\T_{\ir CM}(\vec{\X}) − Θ \perp h(\vec \X)$ \quad $\Ra$ \quad $\E[(\textit T_{\ir CM}(\vec{\X}) − Θ)h(\vec{\X})] = 0$
\textbf{MMSE Estimator:} $\hat{θ}_{\ir MMSE} = \underset{θ ∈ Θ}{\arg \min}$ MSE\\
minimizes the MSE for all estimators
\end{sectionbox}
\begin{sectionbox}
\subsection{Example:}
Estimate mean $θ$ of $\X$ with prior knowledge $θ ∈ Θ\sim \mathcal N$:\\
$\X \sim \mathcal N(θ,σ^2_{\X|Θ=θ})$ and $Θ \sim \mathcal N(m, σ^2_Θ)$\\
$\hat{θ}_{\ir CM} = \E[Θ|\vec{\X} = \vec x] = \frac{N σ^2_Θ}{σ^2_{\X|Θ=θ} + N σ^2_Θ} \hat{θ}_{\ir ML} +\frac{σ^2_{\X|Θ=θ} }{σ^2_{\X|Θ=θ}+N σ^2_Θ} m$\\
\\
For $N$ independent observations $x_i$: $\hat{θ}_{\ir ML} = \frac1N \sum x_i$\\
Large $N \Ra$ ML better, small $N \Ra $ CM better\\
\end{sectionbox}
\columnbreak
% ========================================================================================
\section{Linear Estimation}
% ========================================================================================
\begin{emphbox}
$t$ is now the unknown parameter $θ$, we want to estimate $y$ and $\vec x$ is the input vector... review regression problem $\vec y = \ma A \vec x$ (we solve for $\vec x$), here we solve for $\vec t$, because $\vec x$ is known (measured)! Confusing...\\
1. Training $\ra$ 2. Estimation\\
Training: We observe $y$ and $\vec x$ (knowing both) and then based on that we try to estimate $y$ given $\vec x$ (only observe $\vec x$) with a linear model $\hat y=\vec x^\top\vec t$
\end{emphbox}
\begin{sectionbox}
\begin{emphbox}
Estimation: $\hat y = \vec x^\top \vec t + m$ \quad or \quad $\hat y = \vec x^\top \vec t$\\
\end{emphbox}
Given: $N$ observations $(y_i, \vec x_i)$, unknown parameters $\vec t$, noise $m$\\
$\vec y = \mat{y_1 \\ \svdots \\ y_n}$ \quad $\ma X = \mat{\vec{x}_1^\top \\ \svdots \\ \vec{x}_n^\top}$ \qquad Note: $\hat y ≠ y$!!\\
Problem: Estimate $y$ based on given (known) observations $\vec x$ and unknown parameter $\vec t$ with assumed linear Model: $\hat y = \vec x^\top \vec t$\\
Note $y = \vec x^\top \vec t + m \ra y = \vec x^{'\top} \vec t'$ with $\vec x'=\vect{\vec x \\ 1}$,\quad$t'=\vect{\vec t \\ m}$\\
\\
Sometimes in Exams: $\hat y = \vec x^\top \vec t \Leftrightarrow \hat{\vec x} = \ma T^\top \vec y$\\ estimate $\vec x$ given $\vec y$ and unknown $\ma T$\\
\end{sectionbox}
\begin{sectionbox}
\subsection{Least Square Estimation (LSE)}
Tries to minimize the square error for linear Model: $\hat y_{\ir LS} = \vec x^\top \vec t_{\ir LS}$\\
Least Square Error: $\min \left[ \sum\limits_{i=1}^N (y_i - \vec x_i^\top \vec t)^2 \right] = \min\limits_{\vec t} \norm{\vec y - \ma X \vec t}$\\
\begin{emphbox}
$\vec t_{\ir LS} = (\ma X^\top \ma X)^{-1} \ma X^\top \vec y$\\
\end{emphbox}
$\hat{\vec y}_{\ir LS} = \ma X \vec t_{\ir LS} \in span(X)$
\textbf{Orthogonality Principle:} $N$ observations $\vec x_i ∈ \R^d$ \\ $\ma Y − \ma X\ma T_{\ir LS} ⊥ \operatorname{span}[\ma X] \Leftrightarrow \ma Y - \ma X \ma T_{\ir LS} ∈ \operatorname{null}[\ma \X^\top]$, thus\\
$\ma X^\top (\ma Y − \ma X \ma T_{\ir LS} ) = 0$ and if $N > d ∧ \operatorname{rang}[\ma X] = d$:\\ $\ma T_{\ir LS} = (\ma X^\top \ma X)^{-1} \ma X^\top \ma Y$
\end{sectionbox}
\begin{sectionbox}
\subsection{Linear Minimum Mean Square Estimator (LMMSE)}
Estimate $y$ with linear estimator $\vec t$, such that $\hat y = \vec t^\top \vec x + m$ \\
Note: the Model does not need to be linear! The estimator is linear!
\begin{emphbox}
$\hat y_{\ir LMMSE} = \underset{t,m}{\arg \min} \E\left[ \norm{\vec y - ( \vec t^\top \vec x+ m)}_2^2 \right]$
\end{emphbox}
If Random joint variable $\vec z = \vect{\vec x \\ y}$ with \\ $\vec {μ}_{\vec z} = \vect{\vec{μ}_{\vec x} \\ μ_y}$ and $\ma C_{\vec z} = \mat{\ma C_{\vec x} & \vec c_{\vec xy} \\ c_{y\vec x} & c_y}$ then\\
LMMSE Estimation of $y$ given $x$ is\\
$\hat y = μ_y+\vec c_{y\vec x} \ma C_{\vec x}^{-1}(\vec x-\vec{μ}_{\vec x}) = \underbrace{\vec c_{y\vec x} \ma C_{\vec x}^{-1}}_{=\vec t^\top}\vec x - \underbrace{μ_y + \vec c_{y\vec x} \ma C_{\vec x}^{-1}\vec{μ}_{\vec x}}_{= m}$\\
Minimum MSE: $\E\left[ \norm{\vec y - (\vec x^\top \vec t + m)}_2^2 \right] = c_y - c_{y\vec x} C_{\vec x}^{-1}\vec c_{\vec xy}$\\
\\
\textbf{Hint:} First calculate $\hat y$ in general and then set variables according to system equation.\\
\textbf{Multivariate:} $\hat{\vec y} = \ma T_{\ir LMMSE}^\top \vec x$ \qquad $ \ma T_{\ir LMMSE}^\top = \ma C_{\vy \vx} \ma C_{\vx}^{-1}$\\
\rule{\columnwidth}{0.5pt}
\\
If $\vec \mu_{\vec z} = \vec 0$ then\\
Estimator $\hat y = \vec c_{y, \vec x} \ma C^{-1}_{\vec x} \vec x$\\
Minimum MSE: $\E[c_{y,\vec x}] = c_y - \vec t^\top \vec c_{\vec x,y}$
\end{sectionbox}
\begin{sectionbox}
\subsection{Matched Filter Estimator (MF)}
For channel $\vec y = \vec hx + \vec v$, Filtered: $\vec t^\top \vec y = \vec t^\top\vec h x + \vec t^\top \vec v$\\
Find Filter $\vec t^\top$ that maximizes SNR $= \frac{\norm{ \vec h x}} {\norm{\vec v}}$\\
$\ma t_{\ir MF} = \underset{t}{\max} \left\{ \frac{\E\left[ (\vec t^\top \vec h x)^2 \right] }{\E\left[ (\vec t^\top \vec v)^2 \right] } \right\}$\\
\\
In the lecture (estimate $\vec h$):\\
$\ma T_{\ir MF} = \underset{T}{\max} \left\{ \frac{\left| \E\left[ \hat{\vec h}^H \vec h \right] \right|^2}{\operatorname{tr}\left[ \Var[\ma T \vec n]\right] } \right\}$\\
$\hat{\vec h}_{\ir MF} = \ma T_{\ir MF} \vec y$ \qquad $\ma T_{\ir MF} \propto \ma C_{\vec h} \ma S^H \ma C^{-1}_{\vec n}$
\end{sectionbox}
\begin{sectionbox}
\subsection{Example}
\begin{center}
\includegraphics[width = 0.7\columnwidth]{channel}
\end{center}
System Model: $\vec y_n = \ma H \vec s_n + η_n$\\
with $\ma H = (h_{m,k}) \in \C^{M \times K}$ \qquad ($m\in[1,M], k\in[1,K]$)\\
\textbf{Linear Channel Model} $\vec y = \ma S \vec h + \vec n$ with \\$\vec h \sim \mathcal N (0, \ma C_{\vec h})$ and $\vec n \sim \mathcal N (0, \ma C_{\vec n})$\\
\\
Linear Estimator $\ma T$ estimates $\hat {\vec h} = \ma T \vec y \in \C^{MK}$\\
$\ma T_{\ir MMSE} = \ma C_{\vec h \vec y} \ma C_{\vec y}^{-1} = \ma C_{\vec h} \ma S^{\ir H} (\ma S \ma C_{\vec h} \ma S^{\ir H} + \ma C_{\vec n})^{-1}$\\
$\ma T_{\ir ML} = \ma T_{\ir Cor} = (\ma S^{\ir H} \ma C^{−1}_{\vec n} \ma S)^{-1} \ma S^{\ir H} \ma C_{\vec n}^{-1}$\\
$\ma T_{\ir MF} ∝ \ma C_{\vec h} \ma S^{\ir H} \ma C_{\vec n}^{-1}$\\
For Assumption $\ma S^{\ir H} \ma S = N σ_s^2 \ma 1_{K \times M}$ and $\ma C_{\vec n} = σ_η^2 \ma 1_{N\times M}$\\
\includegraphics[width = \columnwidth]{comparison}
\end{sectionbox}
\begin{sectionbox}
\subsection{Estimators}
Upper Bound: Uniform in $[0;θ]: \hat{θ}_{\ir ML} = \frac{2}{N} \sum x_i$\\
Probability $p$ for $\mathcal B(p,N)$: $\hat{p}_{\ir ML} = \frac{x}{N}$ \quad $\hat{p}_{\ir CM} = \frac{x+1}{N+2}$\\
Mean $μ$ for $\mathcal N(μ,σ^2): \hat{μ}^2_{\ir ML} = \frac{1}{N} \sum\limits_{i=1}^N x_i$\\
Variance $\sigma^2$ for $\mathcal N(μ,σ^2): \hat{σ}^2_{\ir ML} = \frac{1}{N} \sum\limits_{i=1}^N (x_i - μ)^2$
\end{sectionbox}
\vfill
% Section
% ----------------------------------------------------------------------
\section{Gaussian Stuff}
\begin{sectionbox}
\subsection{Gaussian Channel}
Channel: $\Y = h s_i + \textit N$ with $h \sim \mathcal N, \textit N \sim \mathcal N$\\
$L(y_1,...,y_N) = \prod\limits_{i=1}^n f_{\Y_i}(y_i, h)$\\
$f_{\Y_i}(y_i, h) = \frac{1}{\sqrt{2 \pi} \sigma}\exp\left( - \frac{1}{2 \sigma^2} (y_i - hs_i)^2 \right)$\\
$\hat h_{ML} = \underset{h}{\operatorname{argmin}} \{\norm{\vec y - h \vec s}^2 \} = \frac{\vec s^\top \vec y}{\vec s^\top \vec s}$\\
\\
If multidimensional channel: $\vec y = \ma S \vec h + \vec n$:\\
$L(\vec y, \vec h) = \frac{1}{\sqrt{\det(2 \pi \ma C)}}\exp\left( - \frac{1}{2} (\vec y - \ma S \vec h)^\top\ma C^{-1}(\vec y - \ma S \vec h) \right)$\\
$l(\vec y, \vec h) = \frac{1}{2} \left( \log(\det(2 \pi \ma C) - (\vec y - \ma S \vec h)^\top\ma C^{-1}(\vec y - \ma S \vec h) \right)$\\
\\
$\frac{\diff}{\diff h} (\vec y - \ma S \vec h)^\top\ma C^{-1}(\vec y - \ma S \vec h) = −2 \ma S^\top \ma C^{−1}(\vec y − \ma S\vec h)$
\textbf{Gaussian Covariance:} if $\Y \sim \mathcal N(0,σ^2), \textit N \sim \mathcal N(0,σ^2)$:\\
$\ma C_{\Y} = \Cov[\Y,\Y] = \E[(\Y-μ)(\Y-μ)^\top] = \E[\Y\Y^\top]$\\
For Channel $\Y = S h + \textit N$: $\E[\Y\Y^\top] = S\E[h h^\top]S^\top + \E[\textit N \textit N^\top]$
\end{sectionbox}
\begin{sectionbox}
\subsection{Multivariate Gaussian Distributions}
A vector $\vx$ of $n$ independent Gaussian random variables $\x_i$ is jointly Gaussian.
If $\vx \sim \mathcal N(\vec \mu_{\vx}, \ma C_{\vx})$:\\
\begin{emphbox}
$f_{\vx}(\vec x) = f_{\x_1,...,\x_n}(\x_1,...,\x_n) =$ \\[1em] $= \frac{1}{\sqrt{\det(2 π \ma C_{\vx})}} \exp \left( - \frac{1}{2}\left(\vec x - \vec {μ}_{\vx}\right)^\top \ma C_{\vx}^{-1}\left(\vec x - \vec {μ}_{\vx}\right) \right)$\\
\end{emphbox}
Affine transformations $\vy = \ma A \vx + \vec b$ are jointly Gaussian with\\
$\vy \sim \mathcal N(\ma A \vec \mu_{\vx} + \vec b, \ma A \ma C_{\vx} \ma A^\top) $\\
All marginal PDFs are Gaussian as well
\textbf{Contour Lines}\\
Ellipsoid with central point $\E[\vec y]$ and main axis are the eigenvectors of $\ma C_{\vec y}^{-1}$\\
\subsection{Conditional Gaussian}
$\VA\!\sim\!\mathcal N(\vec {μ}_{\VA}, \ma C_{\VA}), \VB\!\sim\!\mathcal N(\vec{μ}_{\VB}, \ma C_{\VB})$ \\
$\Ra (\VA| \VB\!=\!b) \sim \mathcal N(\vec{μ}_{\VA|\VB},\ma C_{\VA|\VB})$\\
\\
\textbf{Conditional Mean:}\\
$\E[\VA|\VB = \vec b] = \vec{μ}_{\VA|\VB=\vec b} = \vec{μ}_{\VA} + \ma C_{\VA\VB}\;\ma C_{\VB\VB}^{-1} \left(\vec b - \vec{μ}_{\VB} \right)$\\
\\
\textbf{Conditional Variance:}\\
$\ma C_{\VA|\VB} = \ma C_{\VA\VA} - \ma C_{\VA\VB}\;\ma C_{\VB\VB}^{-1}\;\ma C_{\VB\VA}$
\end{sectionbox}
\begin{sectionbox}
\subsection{Misc}
If CDF of gaussian distribution given $Φ(z) \sim \mathcal N(0,1)$ then for $\X \sim \mathcal N(1,1)$ the CDF is given as $Φ(x - μ_x)$
\end{sectionbox}
% Section
% ----------------------------------------------------------------------
\section{Sequences}
\begin{sectionbox}
\subsection{Random Sequences}
Sequence of a random variable. Example: result of a dice is RV, roll a dice several times is a random sequence.
\subsection{Markov Sequence $X_n : Ω \ra X_n$}
Sequence of memoryless state transitions with certain probabilities.\\
1. state: $f_{\X_1}(x_1)$\\
2. state: $f_{\X_2|\X_1}(x_2|x_1)$\\
n. state: $f_{\X_n|\X_{n-1}}(x_n|x_{n-1})$\\
\end{sectionbox}
\begin{sectionbox}
\subsection{Hidden Markov Chains}
Problem: states $\X_i$ are not visible and can only be guessed indirectly as a random variable $\Y_i$.\\
\\
\includegraphics[width=\textwidth]{hidden_markov}
Conditional pdf $f_{\VX_n|\VY_n}$ \qquad Likelihood pdf $f_{\Y_n|\X_n}$\\
State-transision pdf $f_{\X_n|\X_{n-1}}$\\
\textbf{Estimation:}
\begin{equation*}
f_{\VX_n|\VY_n} \propto f_{\VY_n|\VX_n} \cdot \int_{\mathbb X} f_{\VX_n|\VX_{n-1}} \cdot f_{\VX_{n-1}|\VY_{n-1}} \diff \vec x_{n-1}
\end{equation*}
\end{sectionbox}
% Section
% ----------------------------------------------------------------------
\section{Recursive Estimation}
\begin{sectionbox}
\subsection{Kalman-Filter}
recursively calculates the most likely state from previous state estimates and current observation. Shows
optimum performance for Gauss-Markov Sequences.\\
\textbf{State space:}\\
$\vec x_n = \ma G_n \vec x_{n−1} + \ma B \vec u_n + \vec v_n$\\
$\vec y_n = \ma H_n \vec x_{n} + \vec w_n$\\
\\
With gaussian process/measurement noise $\vec v_n/\vec w_n$\\
Short notation: $\E[\vec x_n|\vec y_{n-1}] = \hat {\vec x}_{n|n-1}$ \quad $\E[\vec x_n|\vec y_{n}] = \hat {\vec x}_{n|n}$\\
$\E[\vec y_n|\vec y_{n-1}] = \hat {\vec y}_{n|n-1}$ \quad $\E[\vec y_n|\vec y_{n}] = \hat {\vec y}_{n|n}$\\
\\
\textbf{1. step: Prediction}\\
Mean: $\hat {\vec x}_{n|n-1} = \ma G_n \hat{\vec x}_{n-1|n-1}$\\
Covariance: $\ma C_{\vec x_{n|n-1}} = \ma G_n \ma C_{\vec x_{n-1|n-1}} \ma G_n^\top + \ma C_{\vec v}$\\
\\
\textbf{2. step: Update}\\
Mean: $\hat{\vec x}_{n|n} = \hat{\vec x}_{n|n-1} + \ma K_n \left( \vec y_n - \ma H_{n} \hat{\vec x}_{n|n-1} \right)$\\
Covariance: $\ma C_{\vec x_{n|n}} = \ma C_{\vec x_{n|n-1}} + \ma K_n \ma H_{n} \ma C_{\vec x_{n|n-1}}$\\
$\hat{\vec x}_{n|n} = \underbrace{\hat{\vec x}_{n|n-1}}_{\hspace{-3em}{\text{estimation} \E[\X_n|\Y_{n-1} = y_{n-1} ]}} + \overbrace{ \ma K_n \underbrace{ \left( \vec y_n - \ma H_{n} \hat{\vec x}_{n|n-1} \right)}_{\text{innovation:} Δy_n} }^{\text{correction:}\\ \E[\X_n|Δ\Y_n = Δy_n]}$\\[1em]
\\
With optimal \textbf{Kalman-gain} (prediction for $\vec x_n$ based on $\Delta y_n$): \\
$\ma K_n = \ma C_{\vec x_{n|n-1}} \ma H_{n}^\top ( \underbrace{\ma H_{n} \ma C_{\vec x_{n|n-1}} \ma H_{n}^\top + \ma C_{\vec w_{n}}}_{\ma C_{\delta y_n}})^{-1}$\\
\\
\textbf{Innovation}: closeness of the estimated mean value to the real value\\
$\Delta \vec y_n = \vec y_n - \hat{\vec y}_{n|n-1} =\vec y_n - \ma H_{n} \hat{\vec x}_{n|n-1}$\\
\\
\textbf{Init:} $\hat {\vec x}_{0|-1} = \E[\X_0] \qquad σ^2_{0|-1} = \Var[\X_0]$
\\
\textbf{MMSE Estimator:} $\hat{\vec x} = \int \vec x_n f_{\X_n | \Y_{(n)}} (\vec x_n | \vec y_{(n)}) \diff \vec x_n$\\
\end{sectionbox}
\begin{sectionbox}
For non linear problems: Suboptimum nonlinear Filters: Extended KF, Unscented KF, ParticleFilter
\subsection{Extended Kalman (EKF)}
Linear approximation of non-linear $g, h$\\
$\vec x_n = g_n(\vec x_{n−1}, \vec v_n)$ \qquad $\vec v_n \sim \mathcal N$\\
$\vec y_n = h_n(\vec x_{n−1}, \vec w_n)$ \qquad $\vec w_n \sim \mathcal N$\\
\subsection{Unscented Kalman (UKF)}
Approximation of desired PDF $f_{\X_n\!|\!\Y_n}(x_n|y_n)$ by Gaussian PDF.
\end{sectionbox}
\begin{sectionbox}
\subsection{Particle-Filter}
For non linear state space \emph{and} non-gaussian noise
\textbf{Non-linear State space:}\\
$\vec x_n = g_n(\vec x_{n−1}, \vec v_n)$\\
$\vec y_n = h_n(\vec x_{n−1}, \vec w_n)$\\
\textbf{Posterior Conditional PDF:} $f_{\X_n\!|\!\Y_n}(x_n|y_n) \propto \overbrace{ f_{\Y_n\!|\!\X_n}(y_n|x_n) }^{\text{likelihood}} \cdot$\\
${ \displaystyle \cdot \int\limits_{\mathbb X} \underbrace{ f_{\X_n\!|\!\X_{n-1}}(x_n|x_{n-1}) }_{\text{state transition}} \underbrace{ f_{\X_{n-1}\!|\!\Y_{n-1}}(x_{n-1}|y_{n-1}) }_{\text{last conditional PDF}} \diff x_{n-1} }$
$N$ random Particles with particle weight $w_n^i$ at time $n$\\
\textbf{Monte-Carlo-Integration:}
$I = \E[g(\X)] \approx I_N = \frac{1}{N} \sum\limits_{i=1}^{N} \tilde g(x^i)$\\
\textbf{Importance Sampling:} Instead of $f_{\X}(x)$ use \textbf{Importance Density} $q_{\X}(x)$\\
$I_N = \frac{1}{N} \sum\limits_{i=1}^{N} \tilde w^i g(x^i)$ with weights $\tilde w^i = \frac{f_{\X}(x^i)}{q_{\X}(x^i)}$\\
If $\int f_{\X_n}(x) \diff x \ne 1$ then $I_N = \sum\limits_{i=1}^{N} w^i g(x^i)$ with $w^i = \frac{\tilde w^i}{\sum\limits_{i=1}^{N} \tilde w^i}$\\
\end{sectionbox}
\begin{sectionbox}
\subsection{Conditional Stochastical Independence}
$\P(A \cap B | E) = \P(A | E) \cdot \P(B | E)$\\
\\
Given $\Y$, $\X$ and $\Z$ are independent if\\
$f_{\Z|\Y,\X} (z | y, x) = f_{\Z|\Y}(z|y)$ or\\
$f_{\X,\Z|\Y} (x,z|y) = f_{\Z|\Y}(z|y) \cdot f_{\X|\Y}(x|y)$\\
$f_{\Z|\X,\Y}(z|x,y) = f_{\Z|\Y}(z|y)$ or $f_{\X|\Z,\Y}(x|z,y) = f_{\X|\Y}(x|y)$
\end{sectionbox}
% Section
% ----------------------------------------------------------------------
\section{Hypothesis Testing}
making a decision based on the observations
\begin{sectionbox}
\subsection{Definition}
Null hypothesis $H_0: θ ∈ Θ_0$ (Assumed first to be true)\\
Alternate hypothesis $H_1: θ ∈ Θ_1$ (The one to proof) \\
Descision rule $φ: \mathbb X \ra [0, 1]$ with \\
$φ(x) = 1$: decide for $H_1$, $φ(x) = 0$: decide for $H_0$
Error level $α$ with $\E[d(\X)|θ] \le α, ∀θ∈Θ_0$
\begin{tablebox}{p{7mm}llp{17mm}}
Error Type & ${}_{\text{Decision}}$\!{\large $\diagdown$}\!${}^{\text{Reality}}$ & $H_1$ false {\small ($H_0$ true)} & $H_1$ true {\small ($H_0$ false)}
\\ \cmrule
1 (FA) False& $H_1$ rejected & \textbf{T}rue \textbf{N}egative & \textbf{F}alse \textbf{N}egative (Type 2)
\\
Alarm & \small ($H_0$ accepted) & $\P = 1-α$ & $\P = β$
\\[1em]
2 (DE) & $H_1$ accepted & \textbf{F}alse \textbf{P}ositive (Type 1) & \textbf{T}rue \textbf{P}ositive
\\
Detection Error & \small($H_0$ rejected) & $\P = α$ & $\P = 1-β$
\end{tablebox}
Power:
Sensitivity/Recall/Hit Rate: $\frac{\text{TP}}{\text{TP}+\text{FN}}=1-β$\\
Specificity/True negative rate: $\frac{\text{TN}}{\text{FP}+\text{TN}}=1-α$\\
Precision/Positive Prediciton rate: $\frac{\text{TP}}{\text{TP}+\text{FP}}$\\
Accuracy: $\frac{\text{TP} + \text{TN}}{\text{P}+\text{N}} = \frac{2-α-β}{2}$
\subsubsection{Design of a test}
Cost criterion $G_{φ}: Θ \ra [0, 1], θ \mapsto \E[d(X)|θ]$\\
False Positive lower than $α$: $G_d(θ)|_{θ∈Θ_0} ≤ α, ∀ θ ∈ Θ_0$\\
False Negative small as possible: $\max \{G_d(θ)|_{θ∈Θ_1}\}, ∀ θ ∈ Θ_1$
\end{sectionbox}
\begin{sectionbox}
\subsection{Sufficient Statistics}
Sufficiency for a test $T(\X)$ means that no other test statistic, i.e., function of the observations $\vec x$,
contains additional information about the parameter $θ$ to be estimated:\\
$f_{\X|T} (x|T(x) = t, θ) = f_{\X|T}(x|T (x) = t)$
\end{sectionbox}
% Section
% ----------------------------------------------------------------------
\section{Tests}
\begin{sectionbox}
\subsection{Neyman-Pearson-Test}
The best test of $\P_0$ against $\P_1$ is\\
\parbox{15em}{$d_{\ir NP}(x) = \begin{cases} 1 & R(x) > c\\ γ & R(x) = c \\ 0 & R(x) < c \end{cases}$} \quad \parbox{15em}{ Likelihood-Ratio: \\ $R(x) = \frac{f_{\X}(x; θ_1)}{f_{\X}(x; θ_0)}$ }\\
$γ = \frac{α - \P_0(\{R > c\})}{\P_0(\{R = c\})}$ \quad Errorlevel $α$\\
Steps: For $α$ calculate $x_{α}$, then $c = R(x_{α})$\\
\\
\includegraphics[width = 0.9\columnwidth]{tests}
\textbf{Maximum Likelihood Detector:} \quad
$d_{\ir ML}(x) = \begin{cases} 1 & R(x) > 1 \\ 0 & \text{otherwise} \end{cases}$\\
\textbf{ROC Graphs:} plot $G_d(θ_1)$ as a function of $G_d(θ_0)$
\end{sectionbox}
\begin{sectionbox}
\subsection{Bayes Test (MAP Detector)}
Prior knowledge on possible hypotheses: $\P(\{θ ∈ Θ_0 \}) + \P(\{θ ∈ Θ_1\}) = 1$, minimizes the probability of a wrong
decision.\\
$d_{\ir Bayes} =\! \begin{cases} 1& \!\frac{f_{\X}(x|θ_1)}{f_{\X}(x|θ_0)} > \frac{c_0 \P(θ_0|x)}{c_1 \P(θ_1|x)}\\ 0 & \text{otherwise} \end{cases}$
$=\! \begin{cases} 1&\!\! \P(θ_1|x) > \P(θ_0|x) \\ 0 &\!\! \text{otherwise} \end{cases}$
Risk weights $c_0,c_1$ are 1 by default.\\
If $\P(θ_0) = \P(θ_1)$, the Bayes test is equivalent to the ML test\\
\textbf{Loss Function} $L(d(x), θ) = \begin{cases} c_0 & \text{type 1 } d(x) = 1, \text{ but }θ = θ_0 \\ c_1 & \text{type 2 } d(x) = 0, \text{ but }θ = θ_1 \end{cases}$
$\operatorname{risk}(d) = \E[L(d(\X), θ)] = \E [\E [L(d(x), θ)|x = \X ]]$\\
\textbf{Multiple Hypothesis}
$d_{\ir Bayes} = \begin{cases} 0 & x ∈ \mathbb X_0 \\ 1 & x ∈ \mathbb X_1 \\ 2 & x ∈ \mathbb X_2 \end{cases}$
\end{sectionbox}
\begin{sectionbox}
\subsection{Linear Alternative Tests}
$d: \mathbb X \ra \R, \vec x \mapsto \begin{cases} 1 & \vec w^\top \vec x - w_0 > 0 \\ 0 & \text{otherwise}\end{cases}$\\
Estimate normal vector $\vec w^\top$, which separates $\mathbb X$ into $\mathbb X_0$ and $\mathbb X_1$\\
$\log R(\vec x) = \frac{\ln(\det(\ma C_0))}{\ln(\det(\ma C_1))} + \frac{1}{2}(\vec x- \vec{μ}_0)^\top\ma C_0^{-1}(\vec x- \vec{μ}_0) -$ \\ $-\frac{1}{2}(\vec x- \vec{μ}_1)^\top\ma C_1^{-1}(\vec x- \vec{μ}_1) = 0$\\
\textbf{For 2 Gaussians}, with $\ma C_0 = \ma C_1= \ma C$: $\vec w^\top = (\vec {μ}_1 - \vec{μ}_0)^\top \ma C$\\
and constant translation $w_0 = \frac{(\vec {μ}_1 - \vec{μ}_0)^\top \ma C (\vec {μ}_1 - \vec{μ}_0)}{2}$\\
% Bild aus Part7 p 197!!!
\includegraphics[width = 0.9\columnwidth]{linest2}
\end{sectionbox}
% ======================================================================
% End
% ======================================================================
\end{document}