-
-
Notifications
You must be signed in to change notification settings - Fork 41
/
train_new.py
executable file
·445 lines (378 loc) · 16.9 KB
/
train_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import copy
from PIL import Image
import time
import os
#from reid_sampler import StratifiedSampler
from model import ft_net, ft_net_dense, PCB
from random_erasing import RandomErasing
from tripletfolder import TripletFolder
import json
from shutil import copyfile
version = torch.__version__
#fp16
try:
from apex.fp16_utils import *
from apex import amp, optimizers
except ImportError: # will be 3.x series
print('This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--gpu_ids',default='0', type=str,help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--name',default='ft_ResNet50', type=str, help='output model name')
parser.add_argument('--data_dir',default='../Market/pytorch',type=str, help='training dir path')
parser.add_argument('--train_all', action='store_true', help='use all training data' )
parser.add_argument('--color_jitter', action='store_true', help='use color jitter in training' )
parser.add_argument('--batchsize', default=32, type=int, help='batchsize')
parser.add_argument('--poolsize', default=128, type=int, help='poolsize')
parser.add_argument('--margin', default=0.3, type=float, help='margin')
parser.add_argument('--lr', default=0.01, type=float, help='margin')
parser.add_argument('--alpha', default=0.0, type=float, help='regularization, push to -1')
parser.add_argument('--erasing_p', default=0, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--use_dense', action='store_true', help='use densenet121' )
parser.add_argument('--PCB', action='store_true', help='use PCB+ResNet50' )
parser.add_argument('--fp16', action='store_true', help='use float16 instead of float32, which will save about 50% memory' )
opt = parser.parse_args()
data_dir = opt.data_dir
name = opt.name
fp16 = opt.fp16
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >=0:
gpu_ids.append(gid)
# set gpu ids
if len(gpu_ids)>0:
torch.cuda.set_device(gpu_ids[0])
#print(gpu_ids[0])
######################################################################
# Load Data
# ---------
#
transform_train_list = [
#transforms.RandomResizedCrop(size=128, scale=(0.75,1.0), ratio=(0.75,1.3333), interpolation=3), #Image.BICUBIC)
transforms.Resize((256,128), interpolation=3),
#transforms.RandomCrop((256,128)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_val_list = [
transforms.Resize(size=(256,128),interpolation=3), #Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.PCB:
transform_train_list = [
transforms.Resize((384,192), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_val_list = [
transforms.Resize(size=(384,192),interpolation=3), #Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.erasing_p>0:
transform_train_list = transform_train_list + [RandomErasing(probability = opt.erasing_p, mean=[0.0, 0.0, 0.0])]
if opt.color_jitter:
transform_train_list = [transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0)] + transform_train_list
print(transform_train_list)
data_transforms = {
'train': transforms.Compose( transform_train_list ),
'val': transforms.Compose(transform_val_list),
}
train_all = ''
if opt.train_all:
train_all = '_all'
image_datasets = {}
image_datasets['train'] = TripletFolder(os.path.join(data_dir, 'train_all'),
data_transforms['train'])
image_datasets['val'] = TripletFolder(os.path.join(data_dir, 'val'),
data_transforms['val'])
batch = {}
class_names = image_datasets['train'].classes
class_vector = [s[1] for s in image_datasets['train'].samples]
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
shuffle=True, num_workers=8)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
use_gpu = torch.cuda.is_available()
since = time.time()
#inputs, classes, pos, pos_classes = next(iter(dataloaders['train']))
print(time.time()-since)
######################################################################
# Training the model
# ------------------
#
# Now, let's write a general function to train a model. Here, we will
# illustrate:
#
# - Scheduling the learning rate
# - Saving the best model
#
# In the following, parameter ``scheduler`` is an LR scheduler object from
# ``torch.optim.lr_scheduler``.
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = model.state_dict()
best_acc = 0.0
last_margin = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
running_margin = 0.0
running_reg = 0.0
# Iterate over data.
for data in dataloaders[phase]:
# get the inputs
inputs, labels, pos, pos_labels = data
now_batch_size,c,h,w = inputs.shape
if now_batch_size<opt.batchsize: # next epoch
continue
pos = pos.view(4*opt.batchsize,c,h,w)
#copy pos 4times
pos_labels = pos_labels.repeat(4).reshape(4,opt.batchsize)
pos_labels = pos_labels.transpose(0,1).reshape(4*opt.batchsize)
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
pos = Variable(pos.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
#model_eval = copy.deepcopy(model)
#model_eval = model_eval.eval()
outputs, f = model(inputs)
_, pf = model(pos)
#pf = Variable( pf, requires_grad=True)
neg_labels = pos_labels
# hard-neg
# ----------------------------------
nf_data = pf # 128*512
# 128 is too much, we use pool size = 64
rand = np.random.permutation(4*opt.batchsize)[0:opt.poolsize]
nf_data = nf_data[rand,:]
neg_labels = neg_labels[rand]
nf_t = nf_data.transpose(0,1) # 512*128
score = torch.mm(f.data, nf_t) # cosine 32*128
score, rank = score.sort(dim=1, descending = True) # score high == hard
labels_cpu = labels.cpu()
nf_hard = torch.zeros(f.shape).cuda()
for k in range(now_batch_size):
hard = rank[k,:]
for kk in hard:
now_label = neg_labels[kk]
anchor_label = labels_cpu[k]
if now_label != anchor_label:
nf_hard[k,:] = nf_data[kk,:]
break
# hard-pos
# ----------------------------------
pf_hard = torch.zeros(f.shape).cuda() # 32*512
for k in range(now_batch_size):
pf_data = pf[4*k:4*k+4,:]
pf_t = pf_data.transpose(0,1) # 512*4
ff = f.data[k,:].reshape(1,-1) # 1*512
score = torch.mm(ff, pf_t) #cosine
score, rank = score.sort(dim=1, descending = False) #score low == hard
pf_hard[k,:] = pf_data[rank[0][0],:]
# loss
# ---------------------------------
criterion_triplet = nn.MarginRankingLoss(margin=opt.margin)
pscore = torch.sum( f * pf_hard, dim=1)
nscore = torch.sum( f * nf_hard, dim=1)
y = torch.ones(now_batch_size)
y = Variable(y.cuda())
if not opt.PCB:
_, preds = torch.max(outputs.data, 1)
#loss = criterion(outputs, labels)
#loss_triplet = criterion_triplet(f, pf, nf)
reg = torch.sum((1+nscore)**2) + torch.sum((-1+pscore)**2)
loss = torch.sum(torch.nn.functional.relu(nscore + opt.margin - pscore)) #Here I use sum
loss_triplet = loss + opt.alpha*reg
else:
part = {}
sm = nn.Softmax(dim=1)
num_part = 6
for i in range(num_part):
part[i] = outputs[i]
score = sm(part[0]) + sm(part[1]) +sm(part[2]) + sm(part[3]) +sm(part[4]) +sm(part[5])
_, preds = torch.max(score.data, 1)
loss = criterion(part[0], labels)
for i in range(num_part-1):
loss += criterion(part[i+1], labels)
# backward + optimize only if in training phase
if phase == 'train':
if fp16: # we use optimier to backward loss
with amp.scale_loss(loss_triplet, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss_triplet.backward()
optimizer.step()
# statistics
if int(version[0])>0 or int(version[2]) > 3: # for the new version like 0.4.0 and 0.5.0
running_loss += loss_triplet.item() #* opt.batchsize
else : # for the old version like 0.3.0 and 0.3.1
running_loss += loss_triplet.data[0] #*opt.batchsize
#print( loss_triplet.item())
running_corrects += float(torch.sum(pscore>nscore+opt.margin))
running_margin +=float(torch.sum(pscore-nscore))
running_reg += reg
datasize = dataset_sizes['train']//opt.batchsize * opt.batchsize
epoch_loss = running_loss / datasize
epoch_reg = opt.alpha*running_reg/ datasize
epoch_acc = running_corrects / datasize
epoch_margin = running_margin / datasize
#if epoch_acc>0.75:
# opt.margin = min(opt.margin+0.02, 1.0)
print('now_margin: %.4f'%opt.margin)
print('{} Loss: {:.4f} Reg: {:.4f} Acc: {:.4f} MeanMargin: {:.4f}'.format(
phase, epoch_loss, epoch_reg, epoch_acc, epoch_margin))
y_loss[phase].append(epoch_loss)
y_err[phase].append(1.0-epoch_acc)
# deep copy the model
if epoch_margin>last_margin:
last_margin = epoch_margin
last_model_wts = model.state_dict()
if epoch%10 == 9:
save_network(model, epoch)
draw_curve(epoch)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
#print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(last_model_wts)
save_network(model, 'last')
return model
######################################################################
# Draw Curve
#---------------------------
x_epoch = []
fig = plt.figure()
ax0 = fig.add_subplot(121, title="triplet_loss")
ax1 = fig.add_subplot(122, title="top1err")
def draw_curve(current_epoch):
x_epoch.append(current_epoch)
ax0.plot(x_epoch, y_loss['train'], 'bo-', label='train')
# ax0.plot(x_epoch, y_loss['val'], 'ro-', label='val')
ax1.plot(x_epoch, y_err['train'], 'bo-', label='train')
# ax1.plot(x_epoch, y_err['val'], 'ro-', label='val')
if current_epoch == 0:
ax0.legend()
ax1.legend()
fig.savefig( os.path.join('./model',name,'train.jpg'))
######################################################################
# Save model
#---------------------------
def save_network(network, epoch_label):
save_filename = 'net_%s.pth'% epoch_label
save_path = os.path.join('./model',name,save_filename)
torch.save(network.cpu().state_dict(), save_path)
if torch.cuda.is_available:
network.cuda(gpu_ids[0])
######################################################################
# Finetuning the convnet
# ----------------------
#
# Load a pretrainied model and reset final fully connected layer.
#
if opt.use_dense:
model = ft_net_dense(len(class_names))
else:
model = ft_net(len(class_names))
if opt.PCB:
model = PCB(len(class_names))
print(model)
if use_gpu:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
if not opt.PCB:
ignored_params = list(map(id, model.model.fc.parameters() )) + list(map(id, model.classifier.parameters() ))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.1*opt.lr},
{'params': model.model.fc.parameters(), 'lr': opt.lr},
{'params': model.classifier.parameters(), 'lr': opt.lr}
], weight_decay=5e-4, momentum=0.9, nesterov=True)
else:
ignored_params = list(map(id, model.model.fc.parameters() ))
ignored_params += (list(map(id, model.classifier0.parameters() ))
+list(map(id, model.classifier1.parameters() ))
+list(map(id, model.classifier2.parameters() ))
+list(map(id, model.classifier3.parameters() ))
+list(map(id, model.classifier4.parameters() ))
+list(map(id, model.classifier5.parameters() ))
#+list(map(id, model.classifier6.parameters() ))
#+list(map(id, model.classifier7.parameters() ))
)
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.001},
{'params': model.model.fc.parameters(), 'lr': 0.01},
{'params': model.classifier0.parameters(), 'lr': 0.01},
{'params': model.classifier1.parameters(), 'lr': 0.01},
{'params': model.classifier2.parameters(), 'lr': 0.01},
{'params': model.classifier3.parameters(), 'lr': 0.01},
{'params': model.classifier4.parameters(), 'lr': 0.01},
{'params': model.classifier5.parameters(), 'lr': 0.01},
#{'params': model.classifier6.parameters(), 'lr': 0.01},
#{'params': model.classifier7.parameters(), 'lr': 0.01}
], weight_decay=5e-4, momentum=0.9, nesterov=True)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer_ft, milestones=[40,60], gamma=0.1)
######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
#
# It should take around 1-2 hours on GPU.
#
dir_name = os.path.join('./model',name)
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
copyfile('./train_new.py', dir_name+'/train_new.py')
copyfile('./model.py', dir_name+'/model.py')
copyfile('./tripletfolder.py', dir_name+'/tripletfolder.py')
# save opts
with open('%s/opts.json'%dir_name,'w') as fp:
json.dump(vars(opt), fp, indent=1)
if fp16:
model, optimizer_ft = amp.initialize(model, optimizer_ft, opt_level = "O1")
model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=70)