forked from google-research/albert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrace_utils.py
432 lines (358 loc) · 15.4 KB
/
race_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# coding=utf-8
# Copyright 2018 The Google AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions for RACE dataset."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import collections
import json
import os
from albert import classifier_utils
from albert import fine_tuning_utils
from albert import modeling
from albert import optimization
from albert import tokenization
import tensorflow.compat.v1 as tf
from tensorflow.contrib import tpu as contrib_tpu
class InputExample(object):
"""A single training/test example for the RACE dataset."""
def __init__(self,
example_id,
context_sentence,
start_ending,
endings,
label=None):
self.example_id = example_id
self.context_sentence = context_sentence
self.start_ending = start_ending
self.endings = endings
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
l = [
"id: {}".format(self.example_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
]
if self.label is not None:
l.append("label: {}".format(self.label))
return ", ".join(l)
class RaceProcessor(object):
"""Processor for the RACE data set."""
def __init__(self, use_spm, do_lower_case, high_only, middle_only):
super(RaceProcessor, self).__init__()
self.use_spm = use_spm
self.do_lower_case = do_lower_case
self.high_only = high_only
self.middle_only = middle_only
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
return self.read_examples(
os.path.join(data_dir, "RACE", "train"))
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
return self.read_examples(
os.path.join(data_dir, "RACE", "dev"))
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
return self.read_examples(
os.path.join(data_dir, "RACE", "test"))
def get_labels(self):
"""Gets the list of labels for this data set."""
return ["A", "B", "C", "D"]
def process_text(self, text):
if self.use_spm:
return tokenization.preprocess_text(text, lower=self.do_lower_case)
else:
return tokenization.convert_to_unicode(text)
def read_examples(self, data_dir):
"""Read examples from RACE json files."""
examples = []
for level in ["middle", "high"]:
if level == "middle" and self.high_only: continue
if level == "high" and self.middle_only: continue
cur_dir = os.path.join(data_dir, level)
cur_path = os.path.join(cur_dir, "all.txt")
with tf.gfile.Open(cur_path) as f:
for line in f:
cur_data = json.loads(line.strip())
answers = cur_data["answers"]
options = cur_data["options"]
questions = cur_data["questions"]
context = self.process_text(cur_data["article"])
for i in range(len(answers)):
label = ord(answers[i]) - ord("A")
qa_list = []
question = self.process_text(questions[i])
for j in range(4):
option = self.process_text(options[i][j])
if "_" in question:
qa_cat = question.replace("_", option)
else:
qa_cat = " ".join([question, option])
qa_list.append(qa_cat)
examples.append(
InputExample(
example_id=cur_data["id"],
context_sentence=context,
start_ending=None,
endings=[qa_list[0], qa_list[1], qa_list[2], qa_list[3]],
label=label
)
)
return examples
def convert_single_example(example_index, example, label_size, max_seq_length,
tokenizer, max_qa_length):
"""Loads a data file into a list of `InputBatch`s."""
# RACE is a multiple choice task. To perform this task using AlBERT,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given RACE example, we will create the 4
# following inputs:
# - [CLS] context [SEP] choice_1 [SEP]
# - [CLS] context [SEP] choice_2 [SEP]
# - [CLS] context [SEP] choice_3 [SEP]
# - [CLS] context [SEP] choice_4 [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
if isinstance(example, classifier_utils.PaddingInputExample):
return classifier_utils.InputFeatures(
example_id=0,
input_ids=[[0] * max_seq_length] * label_size,
input_mask=[[0] * max_seq_length] * label_size,
segment_ids=[[0] * max_seq_length] * label_size,
label_id=0,
is_real_example=False)
else:
context_tokens = tokenizer.tokenize(example.context_sentence)
if example.start_ending is not None:
start_ending_tokens = tokenizer.tokenize(example.start_ending)
all_input_tokens = []
all_input_ids = []
all_input_mask = []
all_segment_ids = []
for ending in example.endings:
# We create a copy of the context tokens in order to be
# able to shrink it according to ending_tokens
context_tokens_choice = context_tokens[:]
if example.start_ending is not None:
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
else:
ending_tokens = tokenizer.tokenize(ending)
# Modifies `context_tokens_choice` and `ending_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
ending_tokens = ending_tokens[- max_qa_length:]
if len(context_tokens_choice) + len(ending_tokens) > max_seq_length - 3:
context_tokens_choice = context_tokens_choice[: (
max_seq_length - 3 - len(ending_tokens))]
tokens = ["[CLS]"] + context_tokens_choice + (
["[SEP]"] + ending_tokens + ["[SEP]"])
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (
len(ending_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
all_input_tokens.append(tokens)
all_input_ids.append(input_ids)
all_input_mask.append(input_mask)
all_segment_ids.append(segment_ids)
label = example.label
if example_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("id: {}".format(example.example_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in \
enumerate(zip(all_input_tokens, all_input_ids, all_input_mask, all_segment_ids)):
tf.logging.info("choice: {}".format(choice_idx))
tf.logging.info("tokens: {}".format(" ".join(tokens)))
tf.logging.info(
"input_ids: {}".format(" ".join(map(str, input_ids))))
tf.logging.info(
"input_mask: {}".format(" ".join(map(str, input_mask))))
tf.logging.info(
"segment_ids: {}".format(" ".join(map(str, segment_ids))))
tf.logging.info("label: {}".format(label))
return classifier_utils.InputFeatures(
example_id=example.example_id,
input_ids=all_input_ids,
input_mask=all_input_mask,
segment_ids=all_segment_ids,
label_id=label
)
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer,
output_file, max_qa_length):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, len(label_list),
max_seq_length, tokenizer, max_qa_length)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(sum(feature.input_ids, []))
features["input_mask"] = create_int_feature(sum(feature.input_mask, []))
features["segment_ids"] = create_int_feature(sum(feature.segment_ids, []))
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def create_model(albert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings, max_seq_length,
dropout_prob, hub_module):
"""Creates a classification model."""
bsz_per_core = tf.shape(input_ids)[0]
input_ids = tf.reshape(input_ids, [bsz_per_core * num_labels, max_seq_length])
input_mask = tf.reshape(input_mask,
[bsz_per_core * num_labels, max_seq_length])
token_type_ids = tf.reshape(segment_ids,
[bsz_per_core * num_labels, max_seq_length])
(output_layer, _) = fine_tuning_utils.create_albert(
albert_config=albert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=token_type_ids,
use_one_hot_embeddings=use_one_hot_embeddings,
use_einsum=True,
hub_module=hub_module)
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [1, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [1],
initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(
output_layer, keep_prob=1 - dropout_prob)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [bsz_per_core, num_labels])
probabilities = tf.nn.softmax(logits, axis=-1)
predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(
labels, depth=tf.cast(num_labels, dtype=tf.int32), dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, probabilities, logits, predictions)
def model_fn_builder(albert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings, max_seq_length, dropout_prob,
hub_module):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, probabilities, logits, predictions) = \
create_model(albert_config, is_training, input_ids, input_mask,
segment_ids, label_ids, num_labels,
use_one_hot_embeddings, max_seq_length, dropout_prob,
hub_module)
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions,
weights=is_real_example)
loss = tf.metrics.mean(
values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
predictions={"probabilities": probabilities,
"predictions": predictions},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn