From 7e552ce0c93879ace760f24335bee9077b64725f Mon Sep 17 00:00:00 2001 From: Kim Morrison Date: Sat, 23 Nov 2024 19:55:57 +1100 Subject: [PATCH] . --- Mathlib/LinearAlgebra/Multilinear/Basic.lean | 22 -------------------- 1 file changed, 22 deletions(-) diff --git a/Mathlib/LinearAlgebra/Multilinear/Basic.lean b/Mathlib/LinearAlgebra/Multilinear/Basic.lean index 4928ab831edfc..96de9639e3cfd 100644 --- a/Mathlib/LinearAlgebra/Multilinear/Basic.lean +++ b/Mathlib/LinearAlgebra/Multilinear/Basic.lean @@ -1719,7 +1719,6 @@ theorem curryFinFinset_symm_apply {k l n : ℕ} {s : Finset (Fin n)} (hk : #s = m <| finSumEquivOfFinset hk hl (Sum.inr i) := rfl --- @[simp] -- Porting note: simpNF linter, lhs simplifies, added aux version below theorem curryFinFinset_symm_apply_piecewise_const {k l n : ℕ} {s : Finset (Fin n)} (hk : #s = k) (hl : #sᶜ = l) (f : MultilinearMap R (fun _ : Fin k => M') (MultilinearMap R (fun _ : Fin l => M') M₂)) @@ -1734,18 +1733,6 @@ theorem curryFinFinset_symm_apply_piecewise_const {k l n : ℕ} {s : Finset (Fin rw [finSumEquivOfFinset_inr, Finset.piecewise_eq_of_not_mem] exact Finset.mem_compl.1 (Finset.orderEmbOfFin_mem _ _ _) -@[simp] -theorem curryFinFinset_symm_apply_piecewise_const_aux {k l n : ℕ} {s : Finset (Fin n)} - (hk : #s = k) (hl : #sᶜ = l) - (f : MultilinearMap R (fun _ : Fin k => M') (MultilinearMap R (fun _ : Fin l => M') M₂)) - (x y : M') : - ((⇑f fun _ => x) (fun i => (Finset.piecewise s (fun _ => x) (fun _ => y) - ((sᶜ.orderEmbOfFin hl) i))) = f (fun _ => x) fun _ => y) := by - have := curryFinFinset_symm_apply_piecewise_const hk hl f x y - simp only [curryFinFinset_symm_apply, finSumEquivOfFinset_inl, Finset.orderEmbOfFin_mem, - Finset.piecewise_eq_of_mem, finSumEquivOfFinset_inr] at this - exact this - @[simp] theorem curryFinFinset_symm_apply_const {k l n : ℕ} {s : Finset (Fin n)} (hk : #s = k) (hl : #sᶜ = l) @@ -1753,7 +1740,6 @@ theorem curryFinFinset_symm_apply_const {k l n : ℕ} {s : Finset (Fin n)} (hk : (x : M') : ((curryFinFinset R M₂ M' hk hl).symm f fun _ => x) = f (fun _ => x) fun _ => x := rfl --- @[simp] -- Porting note: simpNF, lhs simplifies, added aux version below theorem curryFinFinset_apply_const {k l n : ℕ} {s : Finset (Fin n)} (hk : #s = k) (hl : #sᶜ = l) (f : MultilinearMap R (fun _ : Fin n => M') M₂) (x y : M') : (curryFinFinset R M₂ M' hk hl f (fun _ => x) fun _ => y) = @@ -1762,14 +1748,6 @@ theorem curryFinFinset_apply_const {k l n : ℕ} {s : Finset (Fin n)} (hk : #s = refine (curryFinFinset_symm_apply_piecewise_const hk hl _ _ _).symm.trans ?_ rw [LinearEquiv.symm_apply_apply] -@[simp] -theorem curryFinFinset_apply_const_aux {k l n : ℕ} {s : Finset (Fin n)} (hk : #s = k) - (hl : #sᶜ = l) (f : MultilinearMap R (fun _ : Fin n => M') M₂) (x y : M') : - (f fun i => Sum.elim (fun _ => x) (fun _ => y) ((⇑ (Equiv.symm (finSumEquivOfFinset hk hl))) i)) - = f (s.piecewise (fun _ => x) fun _ => y) := by - rw [← curryFinFinset_apply] - apply curryFinFinset_apply_const - end MultilinearMap end Currying