Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: rename CompleteLattice.Independent/.SetIndependent to iSupIndep/sSupIndep #19409

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions Counterexamples/DirectSumIsInternal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ import Mathlib.Tactic.FinCases
# Not all complementary decompositions of a module over a semiring make up a direct sum
This shows that while `ℤ≤0` and `ℤ≥0` are complementary `ℕ`-submodules of `ℤ`, which in turn
implies as a collection they are `CompleteLattice.Independent` and that they span all of `ℤ`, they
implies as a collection they are `iSupIndep` and that they span all of `ℤ`, they
do not form a decomposition into a direct sum.
This file demonstrates why `DirectSum.isInternal_submodule_of_independent_of_iSup_eq_top` must
Expand Down Expand Up @@ -57,9 +57,9 @@ theorem withSign.isCompl : IsCompl ℤ≥0 ℤ≤0 := by
· exact Submodule.mem_sup_left (mem_withSign_one.mpr hp)
· exact Submodule.mem_sup_right (mem_withSign_neg_one.mpr hn)

def withSign.independent : CompleteLattice.Independent withSign := by
def withSign.independent : iSupIndep withSign := by
apply
(CompleteLattice.independent_pair UnitsInt.one_ne_neg_one _).mpr withSign.isCompl.disjoint
(iSupIndep_pair UnitsInt.one_ne_neg_one _).mpr withSign.isCompl.disjoint
intro i
fin_cases i <;> simp

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/DirectSum/Internal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ to represent this case, `(h : DirectSum.IsInternal A) [SetLike.GradedMonoid A]`
needed. In the future there will likely be a data-carrying, constructive, typeclass version of
`DirectSum.IsInternal` for providing an explicit decomposition function.
When `CompleteLattice.Independent (Set.range A)` (a weaker condition than
When `iSupIndep (Set.range A)` (a weaker condition than
`DirectSum.IsInternal A`), these provide a grading of `⨆ i, A i`, and the
mapping `⨁ i, A i →+ ⨆ i, A i` can be obtained as
`DirectSum.toAddMonoid (fun i ↦ AddSubmonoid.inclusion <| le_iSup A i)`.
Expand Down
10 changes: 5 additions & 5 deletions Mathlib/Algebra/DirectSum/LinearMap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -82,8 +82,8 @@ lemma trace_eq_zero_of_mapsTo_ne (h : IsInternal N) [IsNoetherian R M]
(σ : ι → ι) (hσ : ∀ i, σ i ≠ i) {f : Module.End R M}
(hf : ∀ i, MapsTo f (N i) (N <| σ i)) :
trace R M f = 0 := by
have hN : {i | N i ≠ ⊥}.Finite := CompleteLattice.WellFoundedGT.finite_ne_bot_of_independent
h.submodule_independent
have hN : {i | N i ≠ ⊥}.Finite := CompleteLattice.WellFoundedGT.finite_ne_bot_of_iSupIndep
h.iSupIndep
let s := hN.toFinset
let κ := fun i ↦ Module.Free.ChooseBasisIndex R (N i)
let b : (i : s) → Basis (κ i) R (N i) := fun i ↦ Module.Free.chooseBasis R (N i)
Expand Down Expand Up @@ -112,7 +112,7 @@ lemma trace_comp_eq_zero_of_commute_of_trace_restrict_eq_zero
have hds := DirectSum.isInternal_submodule_of_independent_of_iSup_eq_top
f.independent_maxGenEigenspace hf
have h_fin : {μ | f.maxGenEigenspace μ ≠ ⊥}.Finite :=
CompleteLattice.WellFoundedGT.finite_ne_bot_of_independent f.independent_maxGenEigenspace
CompleteLattice.WellFoundedGT.finite_ne_bot_of_iSupIndep f.independent_maxGenEigenspace
simp [trace_eq_sum_trace_restrict' hds h_fin hfg, this]
intro μ
replace h_comm : Commute (g.restrict (f.mapsTo_maxGenEigenspace_of_comm h_comm μ))
Expand All @@ -136,14 +136,14 @@ Note that it is important the statement gives the user definitional control over
_type_ of the term `trace R p (f.restrict hp')` depends on `p`. -/
lemma trace_eq_sum_trace_restrict_of_eq_biSup
[∀ i, Module.Finite R (N i)] [∀ i, Module.Free R (N i)]
(s : Finset ι) (h : CompleteLattice.Independent <| fun i : s ↦ N i)
(s : Finset ι) (h : iSupIndep <| fun i : s ↦ N i)
{f : Module.End R M} (hf : ∀ i, MapsTo f (N i) (N i))
(p : Submodule R M) (hp : p = ⨆ i ∈ s, N i)
(hp' : MapsTo f p p := hp ▸ mapsTo_biSup_of_mapsTo (s : Set ι) hf) :
trace R p (f.restrict hp') = ∑ i ∈ s, trace R (N i) (f.restrict (hf i)) := by
classical
let N' : s → Submodule R p := fun i ↦ (N i).comap p.subtype
replace h : IsInternal N' := hp ▸ isInternal_biSup_submodule_of_independent (s : Set ι) h
replace h : IsInternal N' := hp ▸ isInternal_biSup_submodule_of_iSupIndep (s : Set ι) h
have hf' : ∀ i, MapsTo (restrict f hp') (N' i) (N' i) := fun i x hx' ↦ by simpa using hf i hx'
let e : (i : s) → N' i ≃ₗ[R] N i := fun ⟨i, hi⟩ ↦ (N i).comapSubtypeEquivOfLe (hp ▸ le_biSup N hi)
have _i1 : ∀ i, Module.Finite R (N' i) := fun i ↦ Module.Finite.equiv (e i).symm
Expand Down
36 changes: 18 additions & 18 deletions Mathlib/Algebra/DirectSum/Module.lean
Original file line number Diff line number Diff line change
Expand Up @@ -319,8 +319,8 @@ theorem IsInternal.submodule_iSup_eq_top (h : IsInternal A) : iSup A = ⊤ := by
exact Function.Bijective.surjective h

/-- If a direct sum of submodules is internal then the submodules are independent. -/
theorem IsInternal.submodule_independent (h : IsInternal A) : CompleteLattice.Independent A :=
CompleteLattice.independent_of_dfinsupp_lsum_injective _ h.injective
protected theorem IsInternal.iSupIndep (h : IsInternal A) : iSupIndep A :=
iSupIndep_of_dfinsupp_lsum_injective _ h.injective

/-- Given an internal direct sum decomposition of a module `M`, and a basis for each of the
components of the direct sum, the disjoint union of these bases is a basis for `M`. -/
Expand Down Expand Up @@ -374,7 +374,7 @@ the two submodules are complementary. Over a `Ring R`, this is true as an iff, a
`DirectSum.isInternal_submodule_iff_isCompl`. -/
theorem IsInternal.isCompl {A : ι → Submodule R M} {i j : ι} (hij : i ≠ j)
(h : (Set.univ : Set ι) = {i, j}) (hi : IsInternal A) : IsCompl (A i) (A j) :=
⟨hi.submodule_independent.pairwiseDisjoint hij,
⟨hi.iSupIndep.pairwiseDisjoint hij,
codisjoint_iff.mpr <| Eq.symm <| hi.submodule_iSup_eq_top.symm.trans <| by
rw [← sSup_pair, iSup, ← Set.image_univ, h, Set.image_insert_eq, Set.image_singleton]⟩

Expand All @@ -387,19 +387,19 @@ variable {ι : Type v} [dec_ι : DecidableEq ι]
variable {M : Type*} [AddCommGroup M] [Module R M]

/-- Note that this is not generally true for `[Semiring R]`; see
`CompleteLattice.Independent.dfinsupp_lsum_injective` for details. -/
`iSupIndep.dfinsupp_lsum_injective` for details. -/
theorem isInternal_submodule_of_independent_of_iSup_eq_top {A : ι → Submodule R M}
(hi : CompleteLattice.Independent A) (hs : iSup A = ⊤) : IsInternal A :=
(hi : iSupIndep A) (hs : iSup A = ⊤) : IsInternal A :=
⟨hi.dfinsupp_lsum_injective,
-- Note: https://github.com/leanprover-community/mathlib4/pull/8386 had to specify value of `f`
(LinearMap.range_eq_top (f := DFinsupp.lsum _ _)).1 <|
(Submodule.iSup_eq_range_dfinsupp_lsum _).symm.trans hs⟩

/-- `iff` version of `DirectSum.isInternal_submodule_of_independent_of_iSup_eq_top`,
`DirectSum.IsInternal.submodule_independent`, and `DirectSum.IsInternal.submodule_iSup_eq_top`. -/
`DirectSum.IsInternal.iSupIndep`, and `DirectSum.IsInternal.submodule_iSup_eq_top`. -/
theorem isInternal_submodule_iff_independent_and_iSup_eq_top (A : ι → Submodule R M) :
IsInternal A ↔ CompleteLattice.Independent A ∧ iSup A = ⊤ :=
⟨fun i ↦ ⟨i.submodule_independent, i.submodule_iSup_eq_top⟩,
IsInternal A ↔ iSupIndep A ∧ iSup A = ⊤ :=
⟨fun i ↦ ⟨i.iSupIndep, i.submodule_iSup_eq_top⟩,
And.rec isInternal_submodule_of_independent_of_iSup_eq_top⟩

/-- If a collection of submodules has just two indices, `i` and `j`, then
Expand All @@ -408,25 +408,25 @@ theorem isInternal_submodule_iff_isCompl (A : ι → Submodule R M) {i j : ι} (
(h : (Set.univ : Set ι) = {i, j}) : IsInternal A ↔ IsCompl (A i) (A j) := by
have : ∀ k, k = i ∨ k = j := fun k ↦ by simpa using Set.ext_iff.mp h k
rw [isInternal_submodule_iff_independent_and_iSup_eq_top, iSup, ← Set.image_univ, h,
Set.image_insert_eq, Set.image_singleton, sSup_pair, CompleteLattice.independent_pair hij this]
Set.image_insert_eq, Set.image_singleton, sSup_pair, iSupIndep_pair hij this]
exact ⟨fun ⟨hd, ht⟩ ↦ ⟨hd, codisjoint_iff.mpr ht⟩, fun ⟨hd, ht⟩ ↦ ⟨hd, ht.eq_top⟩⟩

@[simp]
theorem isInternal_ne_bot_iff {A : ι → Submodule R M} :
IsInternal (fun i : {i // A i ≠ ⊥} ↦ A i) ↔ IsInternal A := by
simp only [isInternal_submodule_iff_independent_and_iSup_eq_top]
exact Iff.and CompleteLattice.independent_ne_bot_iff_independent <| by simp
exact Iff.and iSupIndep_ne_bot_iff_independent <| by simp

lemma isInternal_biSup_submodule_of_independent {A : ι → Submodule R M} (s : Set ι)
(h : CompleteLattice.Independent <| fun i : s ↦ A i) :
lemma isInternal_biSup_submodule_of_iSupIndep {A : ι → Submodule R M} (s : Set ι)
(h : iSupIndep <| fun i : s ↦ A i) :
IsInternal <| fun (i : s) ↦ (A i).comap (⨆ i ∈ s, A i).subtype := by
refine (isInternal_submodule_iff_independent_and_iSup_eq_top _).mpr ⟨?_, by simp [iSup_subtype]⟩
let p := ⨆ i ∈ s, A i
have hp : ∀ i ∈ s, A i ≤ p := fun i hi ↦ le_biSup A hi
let e : Submodule R p ≃o Set.Iic p := p.mapIic
suffices (e ∘ fun i : s ↦ (A i).comap p.subtype) = fun i ↦ ⟨A i, hp i i.property⟩ by
rw [← CompleteLattice.independent_map_orderIso_iff e, this]
exact CompleteLattice.independent_of_independent_coe_Iic_comp h
rw [← iSupIndep_map_orderIso_iff e, this]
exact .of_coe_Iic_comp h
ext i m
change m ∈ ((A i).comap p.subtype).map p.subtype ↔ _
rw [Submodule.map_comap_subtype, inf_of_le_right (hp i i.property)]
Expand All @@ -435,12 +435,12 @@ lemma isInternal_biSup_submodule_of_independent {A : ι → Submodule R M} (s :


theorem IsInternal.addSubmonoid_independent {M : Type*} [AddCommMonoid M] {A : ι → AddSubmonoid M}
(h : IsInternal A) : CompleteLattice.Independent A :=
CompleteLattice.independent_of_dfinsupp_sumAddHom_injective _ h.injective
(h : IsInternal A) : iSupIndep A :=
iSupIndep_of_dfinsupp_sumAddHom_injective _ h.injective

theorem IsInternal.addSubgroup_independent {M : Type*} [AddCommGroup M] {A : ι → AddSubgroup M}
(h : IsInternal A) : CompleteLattice.Independent A :=
CompleteLattice.independent_of_dfinsupp_sumAddHom_injective' _ h.injective
(h : IsInternal A) : iSupIndep A :=
iSupIndep_of_dfinsupp_sumAddHom_injective' _ h.injective

end Ring

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/DirectSum/Ring.lean
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ instances for:
* `A : ι → Submodule S`:
`DirectSum.GSemiring.ofSubmodules`, `DirectSum.GCommSemiring.ofSubmodules`.

If `CompleteLattice.independent (Set.range A)`, these provide a gradation of `⨆ i, A i`, and the
If `iSupIndep (Set.range A)`, these provide a gradation of `⨆ i, A i`, and the
mapping `⨁ i, A i →+ ⨆ i, A i` can be obtained as
`DirectSum.toMonoid (fun i ↦ AddSubmonoid.inclusion <| le_iSup A i)`.

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Lie/Semisimple/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -292,7 +292,7 @@ instance (priority := 100) IsSimple.instIsSemisimple [IsSimple R L] :
IsSemisimple R L := by
constructor
· simp
· simpa using CompleteLattice.setIndependent_singleton _
· simpa using sSupIndep_singleton _
· intro I hI₁ hI₂
apply IsSimple.non_abelian (R := R) (L := L)
rw [IsSimple.isAtom_iff_eq_top] at hI₁
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Lie/Semisimple/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ class IsSemisimple : Prop where
/-- In a semisimple Lie algebra, the supremum of the atoms is the whole Lie algebra. -/
sSup_atoms_eq_top : sSup {I : LieIdeal R L | IsAtom I} = ⊤
/-- In a semisimple Lie algebra, the atoms are independent. -/
setIndependent_isAtom : CompleteLattice.SetIndependent {I : LieIdeal R L | IsAtom I}
setIndependent_isAtom : sSupIndep {I : LieIdeal R L | IsAtom I}
/-- In a semisimple Lie algebra, the atoms are non-abelian. -/
non_abelian_of_isAtom : ∀ I : LieIdeal R L, IsAtom I → ¬ IsLieAbelian I

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Lie/Submodule.lean
Original file line number Diff line number Diff line change
Expand Up @@ -515,8 +515,8 @@ theorem isCompl_iff_coe_toSubmodule :
simp only [isCompl_iff, disjoint_iff_coe_toSubmodule, codisjoint_iff_coe_toSubmodule]

theorem independent_iff_coe_toSubmodule {ι : Type*} {N : ι → LieSubmodule R L M} :
CompleteLattice.Independent N ↔ CompleteLattice.Independent fun i ↦ (N i : Submodule R M) := by
simp [CompleteLattice.independent_def, disjoint_iff_coe_toSubmodule]
iSupIndep N ↔ iSupIndep fun i ↦ (N i : Submodule R M) := by
simp [iSupIndep_def, disjoint_iff_coe_toSubmodule]

theorem iSup_eq_top_iff_coe_toSubmodule {ι : Sort*} {N : ι → LieSubmodule R L M} :
⨆ i, N i = ⊤ ↔ ⨆ i, (N i : Submodule R M) = ⊤ := by
Expand Down
10 changes: 5 additions & 5 deletions Mathlib/Algebra/Lie/Weights/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -668,30 +668,30 @@ lemma injOn_genWeightSpace [NoZeroSMulDivisors R M] :

See also `LieModule.independent_genWeightSpace'`. -/
lemma independent_genWeightSpace [NoZeroSMulDivisors R M] :
CompleteLattice.Independent fun χ : L → R ↦ genWeightSpace M χ := by
iSupIndep fun χ : L → R ↦ genWeightSpace M χ := by
simp only [LieSubmodule.independent_iff_coe_toSubmodule, genWeightSpace,
LieSubmodule.iInf_coe_toSubmodule]
exact Module.End.independent_iInf_maxGenEigenspace_of_forall_mapsTo (toEnd R L M)
(fun x y φ z ↦ (genWeightSpaceOf M φ y).lie_mem)

lemma independent_genWeightSpace' [NoZeroSMulDivisors R M] :
CompleteLattice.Independent fun χ : Weight R L M ↦ genWeightSpace M χ :=
iSupIndep fun χ : Weight R L M ↦ genWeightSpace M χ :=
(independent_genWeightSpace R L M).comp <|
Subtype.val_injective.comp (Weight.equivSetOf R L M).injective

lemma independent_genWeightSpaceOf [NoZeroSMulDivisors R M] (x : L) :
CompleteLattice.Independent fun (χ : R) ↦ genWeightSpaceOf M χ x := by
iSupIndep fun (χ : R) ↦ genWeightSpaceOf M χ x := by
rw [LieSubmodule.independent_iff_coe_toSubmodule]
dsimp [genWeightSpaceOf]
exact (toEnd R L M x).independent_genEigenspace _

lemma finite_genWeightSpaceOf_ne_bot [NoZeroSMulDivisors R M] [IsNoetherian R M] (x : L) :
{χ : R | genWeightSpaceOf M χ x ≠ ⊥}.Finite :=
CompleteLattice.WellFoundedGT.finite_ne_bot_of_independent (independent_genWeightSpaceOf R L M x)
CompleteLattice.WellFoundedGT.finite_ne_bot_of_iSupIndep (independent_genWeightSpaceOf R L M x)

lemma finite_genWeightSpace_ne_bot [NoZeroSMulDivisors R M] [IsNoetherian R M] :
{χ : L → R | genWeightSpace M χ ≠ ⊥}.Finite :=
CompleteLattice.WellFoundedGT.finite_ne_bot_of_independent (independent_genWeightSpace R L M)
CompleteLattice.WellFoundedGT.finite_ne_bot_of_iSupIndep (independent_genWeightSpace R L M)

instance Weight.instFinite [NoZeroSMulDivisors R M] [IsNoetherian R M] :
Finite (Weight R L M) := by
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Lie/Weights/Chain.lean
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@ lemma exists_forall_mem_corootSpace_smul_add_eq_zero
exact finrank_pos
refine ⟨a, b, Int.ofNat_pos.mpr hb, fun x hx ↦ ?_⟩
let N : ℤ → Submodule R M := fun k ↦ genWeightSpace M (k • α + χ)
have h₁ : CompleteLattice.Independent fun (i : Finset.Ioo p q) ↦ N i := by
have h₁ : iSupIndep fun (i : Finset.Ioo p q) ↦ N i := by
rw [← LieSubmodule.independent_iff_coe_toSubmodule]
refine (independent_genWeightSpace R H M).comp fun i j hij ↦ ?_
exact SetCoe.ext <| smul_left_injective ℤ hα <| by rwa [add_left_inj] at hij
Expand Down
10 changes: 5 additions & 5 deletions Mathlib/Algebra/Module/Torsion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -96,13 +96,13 @@ theorem torsionOf_eq_bot_iff_of_noZeroSMulDivisors [Nontrivial R] [NoZeroSMulDiv
· rw [mem_torsionOf_iff, smul_eq_zero] at hr
tauto

/-- See also `CompleteLattice.Independent.linearIndependent` which provides the same conclusion
/-- See also `iSupIndep.linearIndependent` which provides the same conclusion
but requires the stronger hypothesis `NoZeroSMulDivisors R M`. -/
theorem CompleteLattice.Independent.linear_independent' {ι R M : Type*} {v : ι → M} [Ring R]
[AddCommGroup M] [Module R M] (hv : CompleteLattice.Independent fun i => R ∙ v i)
theorem iSupIndep.linear_independent' {ι R M : Type*} {v : ι → M} [Ring R]
[AddCommGroup M] [Module R M] (hv : iSupIndep fun i => R ∙ v i)
(h_ne_zero : ∀ i, Ideal.torsionOf R M (v i) = ⊥) : LinearIndependent R v := by
refine linearIndependent_iff_not_smul_mem_span.mpr fun i r hi => ?_
replace hv := CompleteLattice.independent_def.mp hv i
replace hv := iSupIndep_def.mp hv i
simp only [iSup_subtype', ← Submodule.span_range_eq_iSup (ι := Subtype _), disjoint_iff] at hv
have : r • v i ∈ (⊥ : Submodule R M) := by
rw [← hv, Submodule.mem_inf]
Expand Down Expand Up @@ -444,7 +444,7 @@ theorem torsionBySet_isInternal {p : ι → Ideal R}
(hM : Module.IsTorsionBySet R M (⨅ i ∈ S, p i : Ideal R)) :
DirectSum.IsInternal fun i : S => torsionBySet R M <| p i :=
DirectSum.isInternal_submodule_of_independent_of_iSup_eq_top
(CompleteLattice.independent_iff_supIndep.mpr <| supIndep_torsionBySet_ideal hp)
(iSupIndep_iff_supIndep.mpr <| supIndep_torsionBySet_ideal hp)
(by
apply (iSup_subtype'' ↑S fun i => torsionBySet R M <| p i).trans
-- Porting note: times out if we change apply below to <|
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Analysis/InnerProductSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2197,9 +2197,9 @@ elements each from a different subspace in the family is linearly independent. I
pairwise intersections of elements of the family are 0. -/
theorem OrthogonalFamily.independent {V : ι → Submodule 𝕜 E}
(hV : OrthogonalFamily 𝕜 (fun i => V i) fun i => (V i).subtypeₗᵢ) :
CompleteLattice.Independent V := by
iSupIndep V := by
classical
apply CompleteLattice.independent_of_dfinsupp_lsum_injective
apply iSupIndep_of_dfinsupp_lsum_injective
refine LinearMap.ker_eq_bot.mp ?_
rw [Submodule.eq_bot_iff]
intro v hv
Expand Down
10 changes: 5 additions & 5 deletions Mathlib/GroupTheory/NoncommPiCoprod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ generalizes (one direction of) `Subgroup.disjoint_iff_mul_eq_one`. -/
@[to_additive "`Finset.noncommSum` is “injective” in `f` if `f` maps into independent subgroups.
This generalizes (one direction of) `AddSubgroup.disjoint_iff_add_eq_zero`. "]
theorem eq_one_of_noncommProd_eq_one_of_independent {ι : Type*} (s : Finset ι) (f : ι → G) (comm)
(K : ι → Subgroup G) (hind : CompleteLattice.Independent K) (hmem : ∀ x ∈ s, f x ∈ K x)
(K : ι → Subgroup G) (hind : iSupIndep K) (hmem : ∀ x ∈ s, f x ∈ K x)
(heq1 : s.noncommProd f comm = 1) : ∀ i ∈ s, f i = 1 := by
classical
revert heq1
Expand Down Expand Up @@ -202,7 +202,7 @@ theorem noncommPiCoprod_range [Fintype ι]
@[to_additive]
theorem injective_noncommPiCoprod_of_independent [Fintype ι]
{hcomm : Pairwise fun i j : ι => ∀ (x : H i) (y : H j), Commute (ϕ i x) (ϕ j y)}
(hind : CompleteLattice.Independent fun i => (ϕ i).range)
(hind : iSupIndep fun i => (ϕ i).range)
(hinj : ∀ i, Function.Injective (ϕ i)) : Function.Injective (noncommPiCoprod ϕ hcomm) := by
classical
apply (MonoidHom.ker_eq_bot_iff _).mp
Expand All @@ -220,7 +220,7 @@ theorem independent_range_of_coprime_order
(hcomm : Pairwise fun i j : ι => ∀ (x : H i) (y : H j), Commute (ϕ i x) (ϕ j y))
[Finite ι] [∀ i, Fintype (H i)]
(hcoprime : Pairwise fun i j => Nat.Coprime (Fintype.card (H i)) (Fintype.card (H j))) :
CompleteLattice.Independent fun i => (ϕ i).range := by
iSupIndep fun i => (ϕ i).range := by
cases nonempty_fintype ι
letI := Classical.decEq ι
rintro i
Expand Down Expand Up @@ -279,7 +279,7 @@ theorem independent_of_coprime_order
(hcomm : Pairwise fun i j : ι => ∀ x y : G, x ∈ H i → y ∈ H j → Commute x y)
[Finite ι] [∀ i, Fintype (H i)]
(hcoprime : Pairwise fun i j => Nat.Coprime (Fintype.card (H i)) (Fintype.card (H j))) :
CompleteLattice.Independent H := by
iSupIndep H := by
simpa using
MonoidHom.independent_range_of_coprime_order (fun i => (H i).subtype)
(commute_subtype_of_commute hcomm) hcoprime
Expand Down Expand Up @@ -308,7 +308,7 @@ theorem noncommPiCoprod_range
@[to_additive]
theorem injective_noncommPiCoprod_of_independent
{hcomm : Pairwise fun i j : ι => ∀ x y : G, x ∈ H i → y ∈ H j → Commute x y}
(hind : CompleteLattice.Independent H) :
(hind : iSupIndep H) :
Function.Injective (noncommPiCoprod hcomm) := by
apply MonoidHom.injective_noncommPiCoprod_of_independent
· simpa using hind
Expand Down
Loading
Loading