This repository has been archived by the owner on May 8, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
processCharmmForceField.py
492 lines (460 loc) · 21.2 KB
/
processCharmmForceField.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from __future__ import print_function
import sys
import math
import copy
from simtk.unit import *
section = None
atomTypes = []
atomClasses = {}
residue = None
residues = []
patches = {}
category = None
bonds = []
angles = []
ubs = []
dihedrals = {}
impropers = []
cmaps = []
cmap = None
nonbondeds = {}
nbfixes = {}
def getFieldPairs(fields):
pairs = []
for i in range(len(fields)/2):
pairs.append((fields[2*i], fields[2*i+1]))
return pairs
class Residue(object):
def __init__(self, name):
self.name = name
self.atoms = []
self.atomMap = {}
self.deletions = []
self.bonds = []
self.externalBonds = ['N', 'C']
if name == 'GLY':
self.patches = ['NTER', 'CTEG']
elif name == 'PRO':
self.patches = ['NTER', 'CTEP']
else:
self.patches = ['NTER', 'CTER']
self.lonepairs = []
def addAtom(self, atom):
self.atomMap[atom.name] = len(self.atoms)
self.atoms.append(atom)
def setAtomAnisotropy(self, fields):
atom1 = [a for a in self.atoms if a.name == fields[1]][0]
atom2 = [a for a in self.atoms if a.name == fields[2]][0]
atom3 = [a for a in self.atoms if a.name == fields[3]][0]
atom4 = [a for a in self.atoms if a.name == fields[4]][0]
for param, value in getFieldPairs(fields[5:]):
if param == 'A11':
a11 = float(value)
elif param == 'A22':
a22 = float(value)
atom1.anisotropic = True
atom1.anisotropy = (atom2.type, atom3.type, atom4.type, a11, a22)
def createPatchedResidue(residue, patch):
r = Residue(patch.name+'-'+residue.name)
for atom in patch.atoms:
r.addAtom(atom)
atomNames = set(atom.name for atom in r.atoms)
for atom in residue.atoms:
if atom.name not in patch.deletions:
if atom.name not in atomNames:
r.addAtom(atom)
atomNames.add(atom.name)
else:
# We're using the version from the patch, but we still need to take anisotropy information from the original residue.
for i in range(len(r.atoms)):
if r.atoms[i].name == atom.name:
newAtom = copy.deepcopy(r.atoms[i])
newAtom.anisotropic = atom.anisotropic
if atom.anisotropic:
name2 = [a for a in residue.atoms if a.type == atom.anisotropy[0]][0].name
name3 = [a for a in residue.atoms if a.type == atom.anisotropy[1]][0].name
name4 = [a for a in residue.atoms if a.type == atom.anisotropy[2]][0].name
atom2 = [a for a in r.atoms if a.name == name2][0]
atom3 = [a for a in r.atoms if a.name == name3][0]
atom4 = [a for a in r.atoms if a.name == name4][0]
newAtom.anisotropy = (atom2.type, atom3.type, atom4.type, atom.anisotropy[3], atom.anisotropy[4])
r.atoms[i] = newAtom
for bond in residue.bonds:
if all(atom in atomNames for atom in bond):
r.bonds.append(bond)
for bond in patch.bonds:
r.bonds.append(bond)
for lp in residue.lonepairs:
if all(atom in atomNames for atom in lp[:4]):
r.lonepairs.append(lp)
for lp in patch.lonepairs:
r.lonepairs.append(lp)
return r
class Atom(object):
def __init__(self, fields):
self.name = fields[1]
self.atomClass = fields[2]
self.charge = float(fields[3])
self.polarizable = False
self.anisotropic = False
for param, value in getFieldPairs(fields[4:]):
if param == 'ALPHA':
self.polarizable = True
self.alpha = float(value)*angstrom**3/(138.935456*kilojoules_per_mole*nanometer)
elif param == 'THOLE':
self.thole = float(value)
elif param == 'TYPE':
self.drudeType = value
if 'drudeType' not in dir(self):
self.drudeType = 'DRUD'
if self.polarizable:
sign = 1
if self.alpha < 0*nanometers**2/kilojoules_per_mole:
self.alpha = -self.alpha
sign = -1
self.drudeCharge = sign*math.sqrt(self.alpha*2*(500*kilocalories_per_mole/angstrom**2))
self.charge -= self.drudeCharge
if 'thole' not in dir(self):
self.thole = 1.3
self.type = len(atomTypes)
atomTypes.append(self)
class Cmap(object):
def __init__(self, fields):
if fields[1] != fields[4] or fields[2] != fields[5] or fields[3] != fields[6]:
raise ValueError('Invalid CMAP atoms: '+(' '.join(fields[:8])))
self.classes = [fields[0], fields[1], fields[2], fields[3], fields[7]]
self.size = int(fields[8])
self.values = []
class Nonbonded(object):
def __init__(self, fields):
self.atomClass = fields[0]
values = [float(x) for x in fields[1:]]
if values[1] > 0 or (len(values) > 3 and values[4] > 0):
raise ValueError('Unsupported nonbonded type')
self.epsilon = -values[1]*kilocalories_per_mole
self.sigma = values[2]*angstroms
if len(values) > 3:
self.epsilon14 = -values[4]*kilocalories_per_mole
self.sigma14 = values[5]*angstroms
else:
self.epsilon14 = self.epsilon
self.sigma14 = self.sigma
def getLennardJonesParams(class1, class2, is14):
nbfixParams = None
if (class1, class2) in nbfixes:
nbfixParams = nbfixes[(class1, class2)]
elif (class2, class1) in nbfixes:
nbfixParams = nbfixes[(class2, class1)]
if nbfixParams is not None:
if is14 and len(nbfixParams) > 2:
return nbfixParams[2:3]
return nbfixParams
if class1 not in nonbondeds or class2 not in nonbondeds: # Probably a Drude particle
return (0*kilojoules_per_mole, 1*nanometers)
params1 = nonbondeds[class1]
params2 = nonbondeds[class2]
if is14:
return (sqrt(params1.epsilon14*params2.epsilon14), params1.sigma14+params2.sigma14)
return (sqrt(params1.epsilon*params2.epsilon), params1.sigma+params2.sigma)
continuedLine = None
for inputfile in sys.argv[1:]:
for line in open(inputfile):
if continuedLine is not None:
line = continuedLine+' '+line
continuedLine = None
if line.find('!') > -1:
line = line[:line.find('!')]
line = line.strip()
if line.endswith('-'):
continuedLine = line[:-1]
continue
fields = line.split()
if len(fields) == 0:
continue
if line == 'read rtf card':
section = 'rtf'
elif line == 'read para card':
section = 'para'
elif line == 'end':
section = None
elif section == 'rtf':
if fields[0] == 'MASS':
atomClasses[fields[2]] = (float(fields[3]), fields[4])
elif fields[0] == 'RESI':
residue = Residue(fields[1])
residues.append(residue)
elif fields[0] == 'PRES':
residue = Residue(fields[1])
patches[residue.name] = residue
elif fields[0] == 'ATOM':
residue.addAtom(Atom(fields))
elif fields[0].startswith('DELE') and fields[1] == 'ATOM':
residue.deletions.append(fields[2])
elif (fields[0] == 'BOND') or (fields[0] == 'DOUBLE'):
for name1, name2 in getFieldPairs(fields[1:]):
residue.bonds.append((name1, name2))
elif fields[0].startswith('PATC'):
for pos, name in getFieldPairs(fields[1:]):
if pos.startswith('FIRS'):
residue.patches[0] = name
elif pos == 'LAST':
residue.patches[1] = name
elif fields[0] == 'ANISOTROPY':
residue.setAtomAnisotropy(fields)
elif fields[0] == 'LONEPAIR':
params = dict(getFieldPairs(fields[6:]))
residue.lonepairs.append(fields[2:6]+[fields[1], float(params['distance'])*angstrom, float(params['angle'])*degrees, float(params['dihe'])*degrees])
elif section == 'para':
if fields[0] in ('BONDS', 'ANGLES', 'DIHEDRALS', 'IMPROPER', 'CMAP','NONBONDED', 'NBFIX', 'THOLE'):
category = fields[0]
residue = None
elif category == 'BONDS':
bonds.append((fields[0], fields[1], 2*float(fields[2])*kilocalories_per_mole/angstrom**2, float(fields[3])*angstroms))
elif category == 'ANGLES':
if len(fields) == 5:
angles.append((fields[0], fields[1], fields[2], 2*float(fields[3])*kilocalories_per_mole/radian**2, float(fields[4])*degrees))
else:
ubs.append((fields[0], fields[1], fields[2], 2*float(fields[3])*kilocalories_per_mole/radian**2, float(fields[4])*degrees, 2*float(fields[5])*kilocalories_per_mole/angstrom**2, float(fields[6])*angstroms))
elif category == 'DIHEDRALS':
key = (fields[0], fields[1], fields[2], fields[3])
if key not in dihedrals:
dihedrals[key] = []
dihedrals[key].append((float(fields[4])*kilocalories_per_mole, int(fields[5]), float(fields[6])*degrees))
elif category == 'IMPROPER':
impropers.append((fields[0], fields[1], fields[2], fields[3], float(fields[4])*kilocalories_per_mole/radian**2, float(fields[6])*degrees))
elif category == 'CMAP':
if cmap is None:
cmap = Cmap(fields)
cmaps.append(cmap)
else:
cmap.values += [float(x) for x in fields]
if len(cmap.values) > cmap.size*cmap.size:
raise ValueError('Too many values for CMAP')
if len(cmap.values) == cmap.size*cmap.size:
cmap = None
elif category == 'NONBONDED':
nb = Nonbonded(fields)
nonbondeds[nb.atomClass] = nb
elif category == 'NBFIX':
nbfixes[(fields[0], fields[1])] = (-float(fields[2])*kilocalories_per_mole, float(fields[3])*angstroms)
# Apply patches to create terminal residues.
patchedResidues = []
for residue in residues:
patchedResidues.append(residue)
if residue.patches[0] in patches:
patched = createPatchedResidue(residue, patches[residue.patches[0]])
patched.externalBonds[0] = ''
patchedResidues.append(patched)
if residue.patches[1] in patches:
patched = createPatchedResidue(residue, patches[residue.patches[1]])
patched.externalBonds[1] = ''
patchedResidues.append(patched)
residues = patchedResidues
# Build a list of all unique maps used in CMAP terms.
uniqueCmaps = {}
for cmap in cmaps:
cmap.values = tuple(cmap.values)
if cmap.values not in uniqueCmaps:
uniqueCmaps[cmap.values] = len(uniqueCmaps)
# Create Drude particles.
drudes = {}
for residue in residues:
atoms2 = residue.atoms[:]
for atom in residue.atoms:
if atom.polarizable:
drude = Atom(('', 'D'+atom.name, atom.drudeType, atom.drudeCharge))
atoms2.append(drude)
if atom.anisotropic:
aniso = atom.anisotropy
else:
aniso = None
drudes[(drude.type, atom.type)] = (138.935456*atom.alpha.value_in_unit(nanometers**2/kilojoules_per_mole), atom.thole, atom.drudeCharge, aniso)
residue.atoms = atoms2
# Create the XML file.
print('<ForceField>')
print(' <AtomTypes>')
masslessTypes = set()
for type in atomTypes:
(mass, elem) = atomClasses[type.atomClass]
if mass == 0.0:
elementSpec = ''
masslessTypes.add(type.type)
else:
elementSpec = ' element="%s"' % elem
print(' <Type name="%d" class="%s"%s mass="%f"/>' % (type.type, type.atomClass, elementSpec, mass))
print(' </AtomTypes>')
print(' <Residues>')
for residue in residues:
print(' <Residue name="%s">' % residue.name)
masslessAtoms = set()
for atom in residue.atoms:
print(' <Atom name="%s" type="%d"/>' % (atom.name, atom.type))
if atom.type in masslessTypes:
masslessAtoms.add(atom.name)
for name1, name2 in residue.bonds:
if name1 in residue.atomMap and name2 in residue.atomMap:
if name1 not in masslessAtoms and name2 not in masslessAtoms: # CHARMM lists bonds for lone pairs, which we don't want
print(' <Bond from="%d" to="%d"/>' % (residue.atomMap[name1], residue.atomMap[name2]))
for external in residue.externalBonds:
if external in residue.atomMap:
print(' <ExternalBond from="%d"/>' % residue.atomMap[external])
for lp in residue.lonepairs:
atoms = [residue.atomMap[lp[0]], residue.atomMap[lp[1]], residue.atomMap[lp[3]], residue.atomMap[lp[2]], residue.atomMap[lp[1]]]
if lp[4] == 'relative':
xweights = [-1.0, 0.0, 1.0]
elif lp[4] == 'bisector':
xweights = [-1.0, 0.5, 0.5]
else:
raise ValueError('Unknown lonepair type: '+lp[4])
r = lp[5].value_in_unit(nanometer)
theta = lp[6].value_in_unit(radian)
phi = (180*degrees-lp[7]).value_in_unit(radian)
p = [r*math.cos(theta), r*math.sin(theta)*math.cos(phi), r*math.sin(theta)*math.sin(phi)]
p = [x if abs(x) > 1e-10 else 0 for x in p] # Avoid tiny numbers caused by roundoff error
print(' <VirtualSite type="localCoords" index="%d" atom1="%d" atom2="%d" atom3="%d" excludeWith="%d" wo1="1" wo2="0" wo3="0" wx1="%g" wx2="%g" wx3="%g" wy1="0" wy2="-1" wy3="1" p1="%g" p2="%g" p3="%g"/>' % tuple(atoms+xweights+p))
print(' </Residue>')
print(' </Residues>')
print(' <HarmonicBondForce>')
for bond in bonds:
print(' <Bond class1="%s" class2="%s" length="%g" k="%g"/>' % (bond[0], bond[1], bond[3].value_in_unit(nanometer), bond[2].value_in_unit(kilojoules_per_mole/nanometer**2)))
print(' </HarmonicBondForce>')
print(' <HarmonicAngleForce>')
for angle in angles:
print(' <Angle class1="%s" class2="%s" class3="%s" angle="%.12g" k="%g"/>' % (angle[0], angle[1], angle[2], angle[4].value_in_unit(radian), angle[3].value_in_unit(kilojoules_per_mole/radian**2)))
for angle in ubs:
print(' <Angle class1="%s" class2="%s" class3="%s" angle="%.12g" k="%g"/>' % (angle[0], angle[1], angle[2], angle[4].value_in_unit(radian), angle[3].value_in_unit(kilojoules_per_mole/radian**2)))
print(' </HarmonicAngleForce>')
print(' <PeriodicTorsionForce>')
for dihedral in dihedrals:
values = dihedrals[dihedral]
params = ''
for (i, (k, n, phase)) in enumerate(values):
params += ' periodicity%d="%d" phase%d="%.12g" k%d="%g"' % (i+1, n, i+1, phase.value_in_unit(radians), i+1, k.value_in_unit(kilojoules_per_mole))
print(' <Proper class1="%s" class2="%s" class3="%s" class4="%s"%s/>' % (dihedral[0], dihedral[1], dihedral[2], dihedral[3], params))
print(' </PeriodicTorsionForce>')
print(' <CustomTorsionForce energy="k*(theta-theta0)^2">')
print(' <PerTorsionParameter name="k"/>')
print(' <PerTorsionParameter name="theta0"/>')
for improper in impropers:
print(' <Improper class1="%s" class2="%s" class3="%s" class4="%s" k="%g" theta0="%.12g"/>' % (improper[0], improper[1], improper[2], improper[3], improper[4].value_in_unit(kilojoules_per_mole/radian**2), improper[5].value_in_unit(radian)))
print(' </CustomTorsionForce>')
print(' <CMAPTorsionForce>')
for values in sorted(uniqueCmaps, key=lambda x: uniqueCmaps[x]):
print(' <Map>')
size = int(math.sqrt(len(values)))
shift = size/2
scale = kilocalories_per_mole.conversion_factor_to(kilojoules_per_mole)
# Convert the ordering from the one used by CHARMM to the one used by OpenMM.
reordered = [0]*len(values)
for i in range(size):
i2 = (i+shift)%size
for j in range(size):
j2 = (j+shift)%size
reordered[j2*size+i2] = scale*values[i*size+j]
for i in range(size):
v = reordered[i*size:(i+1)*size]
print(' '+(' '.join('%g' % x for x in v)))
print(' </Map>')
for map in cmaps:
print(' <Torsion map="%d" class1="%s" class2="%s" class3="%s" class4="%s" class5="%s"/>' % (uniqueCmaps[map.values], map.classes[0], map.classes[1], map.classes[2], map.classes[3], map.classes[4]))
print(' </CMAPTorsionForce>')
print(' <NonbondedForce coulomb14scale="0.5" lj14scale="0.5">') # NEED TO FIX
for type in atomTypes:
print(' <Atom type="%d" charge="%g" sigma="1.0" epsilon="1.0"/>' % (type.type, type.charge))
print(' </NonbondedForce>')
if len(drudes) > 0:
print(' <DrudeForce>')
for key in drudes:
(type1, type2) = key
(alpha, thole, charge, aniso) = drudes[key]
if aniso is None:
print(' <Particle type1="%s" type2="%s" charge="%g" polarizability="%g" thole="%g"/>' % (type1, type2, charge, alpha, thole))
else:
print(' <Particle type1="%s" type2="%s" type3="%s" type4="%s" type5="%s" charge="%g" polarizability="%g" thole="%g" aniso12="%g" aniso34="%s"/>' % (type1, type2, aniso[0], aniso[1], aniso[2], charge, alpha, thole, aniso[3], aniso[4]))
print(' </DrudeForce>')
print(' <Script>')
print("""import simtk.openmm as mm
harmonicBondForce = [f for f in [sys.getForce(i) for i in range(sys.getNumForces())] if type(f) == mm.HarmonicBondForce][0]
nonbondedForce = [f for f in [sys.getForce(i) for i in range(sys.getNumForces())] if type(f) == mm.NonbondedForce][0]
numAtomClasses = %d""" % len(atomClasses))
print("""
# Conversion from atom types to atom classes.
typeToClass = {""")
classOrder = dict((c, i) for i,c in enumerate(atomClasses))
for type in atomTypes:
print(" '%s':%s," % (type.type, classOrder[type.atomClass]))
print("""}
# Urey-Bradley parameters.
ubParams = {""")
for angle in ubs:
length = angle[6].value_in_unit(nanometer)
k = angle[5].value_in_unit(kilojoules_per_mole/nanometer**2)
if k != 0.0:
print(' (%d, %d, %d):(%g, %g),' % (classOrder[angle[0]], classOrder[angle[1]], classOrder[angle[2]], length, k))
print("""}
# Add bonds for the Urey-Bradley terms.
for (angle, isConstrained) in zip(data.angles, data.isAngleConstrained):
if isConstrained:
continue
try:
class1 = typeToClass[data.atomType[data.atoms[angle[0]]]]
class2 = typeToClass[data.atomType[data.atoms[angle[1]]]]
class3 = typeToClass[data.atomType[data.atoms[angle[2]]]]
params = None
if (class1, class2, class3) in ubParams:
params = ubParams[(class1, class2, class3)]
elif (class3, class2, class1) in ubParams:
params = ubParams[(class3, class2, class1)]
if params is not None:
harmonicBondForce.addBond(angle[0], angle[2], params[0], params[1])
except:
pass
# Lennard-Jones parameters by atom types.
epsilon = [""")
sigmaScale = 0.5**(1.0/6.0)
for class1 in atomClasses:
for class2 in atomClasses:
print('%g, ' % getLennardJonesParams(class1, class2, False)[0].value_in_unit(kilojoules_per_mole), end='')
print()
print("""]
sigma = [""")
for class1 in atomClasses:
for class2 in atomClasses:
print('%g, ' % (sigmaScale*getLennardJonesParams(class1, class2, False)[1].value_in_unit(nanometers)), end='')
print()
print("""]
epsilon14 = [""")
for class1 in atomClasses:
for class2 in atomClasses:
print('%g, ' % getLennardJonesParams(class1, class2, True)[0].value_in_unit(kilojoules_per_mole), end='')
print()
print("""]
sigma14 = [""")
for class1 in atomClasses:
for class2 in atomClasses:
print('%g, ' % (sigmaScale*getLennardJonesParams(class1, class2, True)[1].value_in_unit(nanometers)), end='')
print()
print("""]
# Create a CustomNonbondedForce to compute Lennard-Jones interactions.
#customNonbondedForce = mm.CustomNonbondedForce('4*eps*((sig/r)^12-(sig/r)^6); eps=epsilon(type1, type2); sig=sigma(type1, type2)')
customNonbondedForce = mm.CustomNonbondedForce('4*epsilon*((sigma/r)^12-(sigma/r)^6); sigma=sqrt(sigma1*sigma2); epsilon=sqrt(epsilon1*epsilon2)')
customNonbondedForce.addPerParticleParameter('sigma')
customNonbondedForce.addPerParticleParameter('epsilon')
sys.addForce(customNonbondedForce)
# Set parameters to match reference force.
customNonbondedForce.setNonbondedMethod(nonbondedForce.getNonbondedMethod())
customNonbondedForce.setUseSwitchingFunction(nonbondedForce.getUseSwitchingFunction())
customNonbondedForce.setCutoffDistance(nonbondedForce.getCutoffDistance())
customNonbondedForce.setSwitchingDistance(nonbondedForce.getSwitchingDistance())
customNonbondedForce.setUseLongRangeCorrection(nonbondedForce.getUseDispersionCorrection())
# Update the NonbondedForce to have correct Lennard-Jones parameters.
for i in range(nonbondedForce.getNumParticles()):
(q, sig, eps) = nonbondedForce.getParticleParameters(i)
customNonbondedForce.addParticle([sig,eps])
nonbondedForce.setParticleParameters(i, q, sig, eps*0)
for i in range(nonbondedForce.getNumExceptions()):
(p1, p2, q, sig, eps) = nonbondedForce.getExceptionParameters(i)
customNonbondedForce.addExclusion(p1, p2)
""")
print(' </Script>')
print('</ForceField>')