forked from galena100/Transform2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6_raw_plots.py
104 lines (83 loc) · 3.2 KB
/
6_raw_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
from striplog import Lexicon, Decor, Component, Legend, Interval, Striplog
#graph limits. xl = x upper limit, yl = y upper limit
xl = 250
yl = 350
#Import the data
path1 = 'C:\\Users\\obeli\\Documents\\GitHub\\Transform2020_2\\t20-litho_boundary_from_gamma\\'
data2=np.loadtxt(os.path.join(path1, 'test001_gamma.csv'),skiprows=1,delimiter=',')
#data2=np.loadtxt(data1 + 'test001_gamma.csv',skiprows=1,delimiter=',')
data3 = np.loadtxt('C:\\Users\\obeli\\Documents\\GitHub\\Transform2020_2\\t20-litho_boundary_from_gamma\\test001_gamma_5cm.csv',skiprows=1,delimiter=',')
#Original gamma (1cm data)
data2[:,0]=data2[:,0]*-1.0
data=data2[np.arange(0,36595,10),:] #take every 10th value
dt2=data2[1,0]-data2[0,0]
#Filtered gamma (filtered data)
data3[:,0] = data3[:,0]*-1.0
data3 = data3[np.arange(0,data3.shape[0],2),:] #use the shape (rowcount) of the array. This curve is already filtered by only taking every 5th value, then take every 2nd value
dt3 = data3[1,0]-data3[0,0]
# Pad out the filtered data set to be the same shape as first data set.
x = data2.shape[0] - data3.shape[0]
for idx in range(x):
data3 = np.append(data3, np.array([[np.NaN,np.NaN]]), axis=0)
#Smoothed gamma (savgol smoothing)
dep=data2[:,0]
syntwave=savgol_filter(data2[:,1], 51, 3) # filter in y direction only
syntwave2=(syntwave-np.mean(syntwave))/np.std(syntwave) #filter in y direction (?)
#--------
#plotting
#--------
with plt.rc_context({'xtick.color':'red', 'ytick.color':'red'}):
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(15, 30))
#track 1
ax1.set_title('Raw (10cm data)', color = 'tab:red')
ax1.plot(data2[:,1],data2[:,0])
ax1.set_ylim([0,yl])
ax1.set_xlim([0,xl])
ax1.invert_yaxis()
#track2
ax2.set_title('Filtered (20cm data)', color = 'tab:red')
ax2.plot(data3[:,1],data3[:,0])
ax2.xaxis.label.set_color('red')
ax2.set_ylim([0,yl])
ax2.set_xlim([0,xl])
ax2.invert_yaxis()
#track3 smoothed
ax3.set_title('Smoothed (Savgol x only smooth)', color = 'tab:red')
ax3.plot(syntwave,dep)
#ax3.set_ylim([np.min(dep),np.max(dep)])
ax3.set_ylim([0,yl])
ax3.set_xlim([0,xl])
ax3.invert_yaxis()
#track4 smoothed
ax4.set_title('Smoothed (Savgol x/y smooth)', color = 'tab:red')
ax4.plot(syntwave2,dep)
#ax3.set_ylim([np.min(dep),np.max(dep)])
ax4.set_ylim([0,yl])
ax4.set_xlim([-3,5])
ax4.invert_yaxis()
'''
fig, axs = plt.subplots(ncols=2, sharey=True)
axs[0] = strip.plot(ax=axs[0], legend=legend)
axs[1] = strip.plot_tops(axs[1], field='lithology', )
axs[1].axis('off')
plt.show()
'''
plt.show()
#plt.savefig('common_labels.png', dpi=300)
#Examples on Syntethic Log
# --------
import numpy as np
dep=np.arange(0,350,dt)
freq1=0.05
freq2=0.03
freq3=0.01
sin1 = np.array(np.sin(dep[0:1000] * freq1 * 2.0 * np.pi)).clip(-0.5,0.5)
sin2 = np.array(np.sin(dep[1000:2000] * freq2 * 2.0 * np.pi)).clip(-0.5,0.5)
sin3 = np.array(np.sin(dep[2000:] * freq3 * 2.0 * np.pi)).clip(-0.5,0.5)
syntwave=np.hstack((sin1,sin2,sin3))
fscales = np.linspace(50,600,100)
thres = 0.5
[bo,bos]=gr_bound(dep,syntwave,fscales,thres)