This repository has been archived by the owner on Aug 23, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides_pres_LE.tex
425 lines (369 loc) · 13.5 KB
/
slides_pres_LE.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
\documentclass[11pt]{beamer}
\usepackage[utf8]{inputenc} %unix-windows-compatible
\usepackage{german}
\usepackage{fancyhdr} % Required for custom headers
\usepackage{lastpage} % Required to determine the last page for the footer
\usepackage{extramarks} % Required for headers and footers
%\usepackage[usenames,dvipsnames]{color} % Required for custom colors
\usepackage{graphicx} % Required to insert images
\usepackage{listings} % Required for insertion of code
\usepackage[section]{placeins}
\usepackage{caption} % to set figure captions in minipage
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{matrix,chains,scopes,positioning,arrows,fit}
\usepackage{commath}
\usepackage{kpfonts}
\usepackage{algorithm}
\newcommand{\pushcode}[1][1]{\hskip\dimexpr#1\algorithmicindent\relax}
\usepackage[noend]{algpseudocode}
\usepackage{tcolorbox}
\usepackage{lipsum}
% (captionof{figure}{..}) Margins
%\topmargin=-0.45in
%\evensidemargin=0in
%\oddsidemargin=0in
%\textwidth=6.5in
%\textheight=9.0in
%\headsep=0.25in
%\linespread{1.1} % Line spacing
% tikz visibility on frames
\tikzset{
invisible/.style={opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}} % \pgfkeysalso doesn't change the path
},
}
% Set up the header and footer
\newtheorem{mydef}{Definition}
\newtheorem{theo}{Theorem}
\newtheorem{cor}{Corollary}
\makeatother
\setbeamertemplate{footline}
{
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.4\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
\usebeamerfont{author in head/foot}\insertshortauthor
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.6\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
\usebeamerfont{title in head/foot}\insertshorttitle\hspace*{3em}
\insertframenumber{} / \inserttotalframenumber\hspace*{1ex}
\end{beamercolorbox}}%
\vskip0pt%
}
\makeatletter
\setbeamertemplate{navigation symbols}{}
\AtBeginSection[]
{
\begin{frame}[plain]
\frametitle{Table of Contents}
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
\title %optional
{Enhanced exact algorithms for discrete bilevel linear problems}
\subtitle{Seminar: Computing Optimal Steiner Trees in Graphs}
\author % (optional, for multiple authors)
{Leon Eifler}
\institute % (optional)
{
Institut f"ur Mathematik\\
Technische Universit"at Berlin
}
\date % (optional)
{01.07.2016}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents
\end{frame}
\section{Introduction}
\begin{frame}
\frametitle{Overview}
\begin{itemize}
\item Is a factor-2 approximation algorithm for the Prize-Collecting Steiner Tree Problem (PCST)
\item Runs in $\mathcal O(d m \log n)$
\item Builds solution by recursively merging clusters
\item Uses dynamic edge-splitting to do this
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The PCST}
\begin{itemize}
\item Given an undirected, connected graph $G=(V,E)$ with edge weights $c:E \rightarrow \mathbb{R}^+_0$ and node prizes $\pi :V \to \mathbb{R}^+_0$.
\begin{tcolorbox}[colback=green!5,colframe=green!40!black,title=PCST]
Find a subtree $T$ of $G$, such that $c(T)+\pi(\bar T)$ is minimized
\end{tcolorbox}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Laminar Family}
\begin{mydef}[Laminar family.]
A family $\mathcal{L}$ of non-empty subsets of $V$ is a laminar family if one of the following three cases holds for all $L_1, L_2 \in \mathcal{L}$:
\begin{align*}
(i) \ L_1 \cap L_2 = \emptyset && (ii) \ L_1 \subseteq L_2 && (iii) \ L_2 \subseteq L_1
\end{align*}
\end{mydef}
\end{frame}
\section{The original algorithm}
\begin{frame}
\frametitle{The Goemans-Williamson (GW) algorithm}
\begin{itemize}
\item Start with each node in its own singleton cluster. All clusters are active
\item Merge and deactivate clusters until a single active cluster remains
\item Maintain a spanning tree for each cluster
\item When finished, remove unnecessary nodes
\end{itemize}
\begin{theo}
Both the original algorithm as well as the fast adaptive variant satisfy the
approximation inequality
\begin{equation*}
c(T)+2\pi(\bar T) \le 2 c(T_{OPT}) + 2\pi (T_{OPT})
\end{equation*}
\end{theo}
\end{frame}
\begin{frame}
\frametitle{Moats}
\begin{itemize}
\item Maintain a $\textbf{moat}$ $y_C \in \mathbb{R}^+$, satisfying:
\begin{tcolorbox}[colback=green!5,colframe=green!40!black,title=Edge-inequality]
Let $\mathcal{C}$ be the set of clusters with one endnode of $e$ inside but not both. Then
\begin{equation*}
\sum_{C \in \mathcal{C}} y_C \le c(e).
\end{equation*}
\end{tcolorbox}
\begin{tcolorbox}[colback=green!5,colframe=green!40!black,title=Cluster-inequality]
For every cluster $C$, let $C'$ be the set with $C' \subseteq C$. Then
\begin{equation*}
\sum_{C' \in \mathcal{C}}y_{C'} \le \sum_{v \in C} \pi(v).
\end{equation*}
\end{tcolorbox}
\item Moats are dual variables of a LP-relaxation
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Primal-Dual Interpretation}
\textbf{Primal LP}
\begin{align*}
\min \sum_{e \in E} c_e x_e + \sum_{i \in V} (1-s_i) \pi_i& \\
s.th. \quad x(\delta(S)) &\ge s_i && \forall i \in S, S \subseteq V \\
s_i, x_e&\ge 0 && \forall i \in V, \forall e \in E
\end{align*}
\textbf{Dual LP}
\begin{align*}
\max \sum_{C \subseteq V} y_S & \\
s.th. \quad \sum_{C: e \in \delta(C)} y_C &\le c_e && \forall e \in E \\
\sum_{C' \subseteq C}y_{C'} &\le \sum_{v \in C} \pi(v) && \forall C \subseteq V \\
y_C &\ge 0 && \forall C \subseteq V
\end{align*}
\end{frame}
\begin{frame}[shrink=10, plain]
\begin{algorithm}[H]
\caption{ The original GW-algorithm }\label{euclid}
\begin{algorithmic}[1]
\Function{GW-Algorithm}{$V,E,c,\pi$}
\State Initialize a singleton active cluster for each node. Set all moat-values 0.
\State Initialize the spanning forest $F$.
\While{At least one cluster is active}
\State Increase the moat values $y_C$ on all active Clusters $C$ until a constraint (edge or cluster) becomes tight.
\If{ edge constraint becomes tight for $e = (u,v)$}
\State Let $C_u, C_v \in \mathcal{L}$ be the maximal clusters
\State Deactivate $C_u$ and $C_v$.
\State Create $C' = C_u \cup C_v$ as active cluster in $\mathcal{L}$.
\State Set the moat $y_{C'} = 0$.
\State Remove all $e'$ with both endpoints in $C'$ from $E$.
\State Add $e$ to $F$.
\EndIf
\If{ cluster constraints becomes tight for $C$ }
\State Deactivate $C$
\EndIf
\EndWhile
\State Prune F of unnecessary nodes
\EndFunction
\end{algorithmic}
\end{algorithm}
\end{frame}
\begin{frame}
\frametitle{Properties}
\begin{itemize}
\item The while loop is called at most $2n$ times.
\item Can be difficult to determine which constraint becomes tight next
\item Clusters can be deactivated and reactivated several times \\
$\rightarrow \mathcal{O}(n\log n)$
\item Overall runtime: $\mathcal{O}(n^2 \log n)$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example}
\center
\begin{tikzpicture}[
node/.style = {shape=circle, rounded corners, node distance=2cm,
draw, align=center,
top color=white, bottom color=blue!20},
terminal/.style = {node, bottom color=red!30},
normal/.style = {node, font=\ttfamily\normalsize}]
\node[normal](1){};
\node[right of = 1, terminal](2){7};
\node[below of = 1, terminal](3){3};
\node[right of = 2, normal](4){};
\node[right of = 3, normal](5){};
\node[below of = 3, normal](6){};
\node[below of = 4, normal](7){};
\node[below of = 7, terminal](8){9};
\path[every node/.style={font=\sffamily\small,scale=.8}]
(1) edge node [left,auto] {5}(2)
(2) edge node [left,auto] {4}(4)
(1) edge node [left,auto] {2}(3)
(1) edge node [left,auto] {5}(2)
(4) edge node [left,auto] {2}(7)
(3) edge node [left,auto] {5}(5)
(5) edge node [left,auto] {5}(7)
(1) edge node [left,auto] {4}(5)
(4) edge node [left,auto] {3}(5)
(3) edge node [left,auto] {2}(6)
(7) edge node [left,auto] {2}(8)
(6) edge node [left,auto] {3}(5)
(5) edge node [left,auto] {4}(8);
\tikzset{blue dotted/.style={draw=blue!50!white, line width=1pt,
dash pattern=on 1pt off 3pt on 5pt off 3pt,
inner sep=2mm, rectangle, rounded corners}};
\tikzset{red dotted/.style={draw=red!50!white, line width=1pt,
dash pattern=on 1pt off 3pt on 5pt off 3pt,
inner sep=2mm, rectangle, rounded corners}};
% Finally the blue dotted boxes are drawn as nodes fitted to other nodes
\node (first dotted box) [blue dotted, visible on=<2>,
fit = (1)(3) ] {};
\node (first dotted box) [blue dotted, visible on=<3>,
fit = (1)(3)(6) ] {};
fit = (1)(3) ] {};
\node (first dotted box) [red dotted, visible on=<4->,
fit = (1)(3)(6) ] {};
\node (first dotted box) [blue dotted, visible on=<5>,
fit = (4)(7) ] {};
\node (first dotted box) [blue dotted, visible on=<6>,
fit = (4)(7)(8) ] {};
\node[fit=(4) (7) (8)] (n12) {};
\node[fit=(5) (7)] (n23) {};
\draw[blue dotted, visible on = <7>] (n23.north west) -- (n12.north west)
-- (n12.north east) -- (n12.south east) -- (n12.south west) --(n23.south west) -- cycle;
\draw[blue dotted, visible on = <7>] (n23.north west) -- (n12.north west)
-- (n12.north east) -- (n12.south east) -- (n12.south west) --(n23.south west) -- cycle;
\node (first dotted box) [blue dotted, visible on=<8>,
fit = (4)(7)(8)(5)(2) ] {};
\end{tikzpicture}
\end{frame}
\section{The fast variant}
\begin{frame}
\frametitle{High-level description}
\begin{itemize}
\item Produces exactly the same result as original scheme
\item Split every edge $e=(u,v)$ into two parts $e_u, e_v$.
\item Use \textbf{events} to quickly determine which edge has to be considered next
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Preliminaries}
\begin{description}
\item[event-value $\mu(p)$] Amount of time until edge-event occurs. For each $e=(u,v)$, we have $\mu(e_u)+\mu(e_v) = c_e$.
\item[slack] The remaining slack of an edge part is $\mu(e_u) - \sum_{C \in \mathcal{C}} y_C$
\item[Data structures] \ \\
\begin{itemize}
\item Priority Queue $Q_C$ for each Cluster, managing edge-events
\item Overall Priority queue of all the queues \\
$\rightarrow$ Heap of heaps
\item Priority Queue of Cluster-events
\end{itemize}
\end{description}
\end{frame}
\begin{frame}[plain, shrink=30]
\begin{algorithm}[H]
\caption{ Fast variant of the GW-scheme }
\begin{algorithmic}[1]
\Function{PCSTFast}{$V,E,c,\pi$}
\State Initialize (data-structures, cluster, forest)
\State $t \leftarrow 0$ \Comment{Current time}
\State $\alpha \leftarrow n$ \Comment{Number of active clusters}
\While{$\alpha > 1$}
\State $(t_e,p_u) \leftarrow$ \Call{GetNextEdgeEvent}{\null}
\State $(t_C,C) \leftarrow$ \Call{GetNextClusterEvent}{\null}
\If{ $t_e < t_c$}
\State $t \leftarrow t_e$
\State \Call{RemoveNextEdgeEvent}{\null}
\State $p_v \leftarrow$ \Call{GetOtherEdgePart}{\null}
\State $(s,C_u) \leftarrow$ \Call{GetSumOnEdgePart}{$p_u$}
\State $(s',C_v) \leftarrow$ \Call{GetSumOnEdgePart}{$p_v$}
\State $r \leftarrow c(u,v) - s - s'$ \Comment{Remaining slack}
\If{ $C_u = C_v$} \Comment{Edge completely in one cluster}
\State continue
\EndIf
\If{ $r = 0$}
\State \Call{MergeClusters}{$C_u,C_v$}
\Else
\State \Call{GenerateNewEdgeEvents}{$p_u,p_v$}
\EndIf
\Else
\State $t \leftarrow t_c$
\State \Call{RemoveNextClusterEvent}{\null}
\State \Call{DeactivateCluster}{$C$}
\State $\alpha \leftarrow \alpha -1$
\EndIf
\EndWhile
\State \Call{PruneTree}{\null}
\EndFunction
\end{algorithmic}
\end{algorithm}
\end{frame}
\begin{frame}
\frametitle{\textproc{MergeClusters($C_u,C_v$)}}
\begin{itemize}
\item Mark both inactive and remove from Queues
\item If $C_u$ is inactive since time $t'$, increase the keys of all events in $Q_{C_u}$ by $t-t'$
\item Merge the queues and insert into heap of heaps
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\textproc{GenerateNewEdgeEvents}($p_u,p_v$)}
\begin{itemize}
\item Invoked when edge event occurs but edge-constraint is not tight.
\item If the cluster containg $v$ is active, split the remaining slack on both edge-parts
\item Otherwise put all the slack on the event for $p_u$
\end{itemize}
\end{frame}
\section{Analysis}
\begin{frame}
\frametitle{Running Time}
\begin{theo}
Let all node prizes $\pi(v)$ and all edge costs $c(e)$ be even integers. Then all cluster merge and deactivation events occur at integer times.
\end{theo}
\pause
\begin{proof}
\begin{itemize}
\item By induction on possible time steps.
\item Induction Hypothesis: Let $t_e$ be the time the edge-constraint for $e$ becomes tight, $t_C$ the time the cluster-constraint for $C$ becomes tight. Then both are integers. If we merge at time $t_e$ between an active and inactive cluster, then $t_e-t_{inactive(C)}$ is even.
\item Case analysis over possible events.
\end{itemize}
\end{proof}
\end{frame}
\begin{frame}
\frametitle{Running Time II}
\begin{cor}
Let all node prizes $\pi(v)$ and al edge costs $c(e)$ be specified with d bits of precision. Then the number of edge-part events is bounded by $\mathcal{O}(dm)$.
\end{cor}
\begin{theo}
All subroutines in the algorithm can be implemented in $\mathcal{O}(\log n)$.
\end{theo}
\end{frame}
\begin{frame}
\centering{\textbf{\Large{Thank you for your attention!}}}
\nocite{HegdeIndykSchmidt2014}
\nocite{Goemans:1992:GAT:139404.139468}
\bibliographystyle{abbrv}
\bibliography{Bibliography}
\end{frame}
\end{document}