-
Notifications
You must be signed in to change notification settings - Fork 2
/
data_utils.py
258 lines (208 loc) · 8.32 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import random
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from torch.utils.data import WeightedRandomSampler
import utils
from modules.mel_processing import mel_spectrogram_torch
from utils import audio_to_energy, load_filepaths_and_text, load_wav_to_torch
# import h5py
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams, all_in_mem: bool = False):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.hparams = hparams
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.unit_interpolate_mode = hparams.data.unit_interpolate_mode
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.spec_len = hparams.train.max_speclen
self.num_mels = hparams.data.n_mel_channels
self.mel_fmin = hparams.data.mel_fmin
self.mel_fmax = hparams.data.mel_fmax
# self.min_file_length = hparams.data.min_file_length * self.sampling_rate
# self.max_file_length = hparams.data.max_file_length * self.sampling_rate
self.num_frames = int(4 * self.sampling_rate // self.hop_length)
random.seed(1234)
random.shuffle(self.audiopaths)
self.all_in_mem = all_in_mem
if self.all_in_mem:
self.cache = [self.get_audio(p[0]) for p in self.audiopaths]
self.audiopaths = self._filter_long_files(self.audiopaths)
def _filter_long_files(self, audio_paths):
filtered = []
# for p, speaker in audio_paths:
# if (
# self.min_file_length
# < (Path(p).stat().st_size // 2)
# < self.max_file_length
# ):
# filtered.append([p, speaker])
self.unique_speaker_count = len(set([x[1] for x in audio_paths]))
print("Unique speakers:", self.unique_speaker_count)
print("Audiopaths before filtering:", len(audio_paths))
# print("Audiopaths after filtering:", len(filtered))
return audio_paths
def get_audio(self, filename):
# filename = filename.replace("\\", "/")
filename, speaker_id = filename
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError(
"Sample Rate not match. Expect {} but got {} from {}".format(
self.sampling_rate, sampling_rate, filename
)
)
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
# compute mel spectrogram
spec = mel_spectrogram_torch(
audio_norm,
self.filter_length,
self.num_mels,
self.sampling_rate,
self.hop_length,
self.win_length,
self.mel_fmin,
self.mel_fmax,
)
spec = torch.squeeze(spec, 0)
# energy
energy = audio_to_energy(
audio_norm,
self.filter_length,
self.num_mels,
self.sampling_rate,
self.hop_length,
self.win_length,
self.mel_fmin,
self.mel_fmax,
)
# load f0 and uv
f0_path = filename.replace(".wav", ".rmvpe.pt")
loaded_data = torch.load(f0_path)
f0 = loaded_data["f0"].unsqueeze(0)
uv = loaded_data["uv"]
# load hubert
hubert_path = filename.replace(".wav", ".soft.pt")
c = torch.load(hubert_path)
c = utils.repeat_expand_2d(
c.squeeze(0), f0.shape[1], mode=self.unit_interpolate_mode
)
# perturbate c randomly with noise and weight randomly
if random.random() < 0.5:
c = c + torch.randn_like(c)
lmin = min(c.size(-1), spec.size(-1))
assert abs(c.size(-1) - spec.size(-1)) < 3, (
c.size(-1),
spec.size(-1),
filename,
)
assert abs(audio_norm.shape[1] - lmin * self.hop_length) < 3 * self.hop_length
spec, c, f0, uv, energy = (
spec[:, :lmin],
c[:, :lmin],
f0[:, :lmin],
uv[:lmin],
energy[:, :lmin],
)
audio_norm = audio_norm[:, : lmin * self.hop_length]
# speaker id
speaker_id = torch.LongTensor([int(speaker_id)])
return c, f0, spec, audio_norm, uv, energy, speaker_id
def random_slice(self, c, f0, spec, audio_norm, uv, energy, speaker_id):
if spec.shape[1] > self.num_frames:
start = random.randint(0, spec.shape[1] - self.num_frames)
end = start + self.num_frames - 1
spec, c, f0, uv, energy = (
spec[:, start:end],
c[:, start:end],
f0[:, start:end],
uv[start:end],
energy[:, start:end],
)
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
return c, f0, spec, audio_norm, uv, energy, speaker_id
def __getitem__(self, index):
if self.all_in_mem:
return self.random_slice(*self.cache[index])
else:
return self.random_slice(*self.get_audio(self.audiopaths[index]))
def __len__(self):
return len(self.audiopaths)
class TextAudioCollate:
def __call__(self, batch):
batch = [b for b in batch if b is not None]
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[0].shape[1] for x in batch]), dim=0, descending=True
)
max_c_len = max([x[0].size(1) for x in batch])
max_wav_len = max([x[3].size(1) for x in batch])
lengths = torch.LongTensor(len(batch))
sid = torch.LongTensor(len(batch))
c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
f0_padded = torch.FloatTensor(len(batch), 1, max_c_len)
spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
uv_padded = torch.FloatTensor(len(batch), max_c_len)
energy_padded = torch.FloatTensor(len(batch), 1, max_c_len)
c_padded.zero_()
spec_padded.zero_()
f0_padded.zero_()
wav_padded.zero_()
uv_padded.zero_()
energy_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
c = row[0]
c_padded[i, :, : c.size(1)] = c
lengths[i] = c.size(1)
f0 = row[1]
f0_padded[i, 0, : f0.size(1)] = f0
spec = row[2]
spec_padded[i, :, : spec.size(1)] = spec
wav = row[3]
wav_padded[i, :, : wav.size(1)] = wav
uv = row[4]
uv_padded[i, : uv.size(0)] = uv
energy = row[5]
energy_padded[i, 0, : energy.size(1)] = energy
sid[i] = row[6]
return (
c_padded,
f0_padded,
spec_padded,
wav_padded,
lengths,
uv_padded,
energy_padded,
sid,
)
def get_weighted_sampler(items):
dataset_samples_weight = 1.0
speaker_names = np.array([item[1] for item in items])
unique_speaker_names = np.unique(speaker_names).tolist()
speaker_ids = [unique_speaker_names.index(l) for l in speaker_names]
speaker_count = np.array(
[len(np.where(speaker_names == l)[0]) for l in unique_speaker_names]
)
weight_speaker = 1.0 / speaker_count
speaker_samples_weight = np.array(
np.array([weight_speaker[l] for l in speaker_ids])
)
speaker_samples_weight = speaker_samples_weight / np.linalg.norm(
speaker_samples_weight
)
speaker_samples_weight = torch.from_numpy(speaker_samples_weight).float()
dataset_samples_weight += speaker_samples_weight * 2.0
return WeightedRandomSampler(dataset_samples_weight, len(dataset_samples_weight))