-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
398 lines (346 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import logging
import multiprocessing
import os
import time
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import modules.commons as commons
import utils
from data_utils import TextAudioCollate, TextAudioSpeakerLoader, get_weighted_sampler
from models import SynthesizerTrn
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
torch.backends.cudnn.benchmark = True
global_step = 0
start_time = time.time()
# os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
class ModelEmaV2(torch.nn.Module):
def __init__(self, model, decay=0.9999, device=None):
super(ModelEmaV2, self).__init__()
# make a copy of the model for accumulating moving average of weights
if hasattr(model, "module"):
self.model_state_dict = deepcopy(model.module.state_dict())
else:
self.model_state_dict = deepcopy(model.state_dict())
self.decay = decay
self.device = device # perform ema on different device from model if set
def _update(self, model, update_fn):
model_values = (
model.module.state_dict().values()
if hasattr(model, "module")
else model.state_dict().values()
)
with torch.no_grad():
for ema_v, model_v in zip(self.model_state_dict.values(), model_values):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(
model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m
)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
def state_dict(self, destination=None, prefix="", keep_vars=False):
return self.model_state_dict
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = torch.cuda.device_count()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = hps.train.port
mp.spawn(
run,
nprocs=n_gpus,
args=(
n_gpus,
hps,
),
)
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
# for pytorch on win, backend use gloo
dist.init_process_group(
backend="gloo" if os.name == "nt" else "nccl",
init_method="env://",
world_size=n_gpus,
rank=rank,
)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
collate_fn = TextAudioCollate()
all_in_mem = hps.train.all_in_mem # If you have enough memory, turn on this option to avoid disk IO and speed up training.
train_dataset = TextAudioSpeakerLoader(
hps.data.training_files, hps, all_in_mem=all_in_mem
)
num_workers = 8 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
if all_in_mem:
num_workers = 0
sampler = get_weighted_sampler(train_dataset.audiopaths)
train_loader = DataLoader(
train_dataset,
num_workers=num_workers,
shuffle=False,
sampler=sampler,
pin_memory=True,
batch_size=hps.train.batch_size,
collate_fn=collate_fn,
)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(
hps.data.validation_files, hps, all_in_mem=all_in_mem
)
eval_loader = DataLoader(
eval_dataset,
num_workers=1,
shuffle=False,
batch_size=1,
pin_memory=False,
drop_last=False,
collate_fn=collate_fn,
)
net_g = SynthesizerTrn(
hps.data.n_mel_channels,
n_speakers=train_dataset.unique_speaker_count,
**hps.model,
).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
skip_optimizer = True
try:
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_default_*.pth"),
net_g,
optim_g,
skip_optimizer,
)
epoch_str = max(epoch_str, 1)
name = utils.latest_checkpoint_path(hps.model_dir, "G_default_*.pth")
global_step = int(name[name.rfind("_") + 1 : name.rfind(".")]) + 1
# global_step = (epoch_str - 1) * len(train_loader)
except Exception:
print("load old checkpoint failed...")
epoch_str = 1
global_step = 0
if skip_optimizer:
epoch_str = 1
global_step = 0
net_g = DDP(net_g, device_ids=[rank])
ema_model = ModelEmaV2(
net_g, decay=0.9999
) # It's necessary that we put this after loading model.
warmup_epoch = hps.train.warmup_epochs
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
# set up warm-up learning rate
if epoch <= warmup_epoch:
for param_group in optim_g.param_groups:
param_group["lr"] = hps.train.learning_rate / warmup_epoch * epoch
# training
if rank == 0:
train_and_evaluate(
rank,
epoch,
hps,
net_g,
optim_g,
ema_model,
scaler,
[train_loader, eval_loader],
logger,
[writer, writer_eval],
)
else:
train_and_evaluate(
rank,
epoch,
hps,
net_g,
optim_g,
ema_model,
scaler,
[train_loader, None],
None,
None,
)
# update learning rate
scheduler_g.step()
def train_and_evaluate(
rank, epoch, hps, nets, optims, ema_model, scaler, loaders, logger, writers
):
net_g = nets
optim_g = optims
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
half_type = torch.bfloat16 if hps.train.half_type == "bf16" else torch.float16
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
for batch_idx, items in enumerate(train_loader):
c, f0, spec, y, lengths, uv, energy, sid = items
spec = spec.cuda(rank, non_blocking=True)
y = y.cuda(rank, non_blocking=True)
c = c.cuda(rank, non_blocking=True)
f0 = f0.cuda(rank, non_blocking=True)
uv = uv.cuda(rank, non_blocking=True)
lengths = lengths.cuda(rank, non_blocking=True)
energy = energy.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run, dtype=half_type):
(prior_loss, diff_loss, f0_pred, lf0, energy_pred, speaker_logits) = net_g(
c,
f0,
uv,
energy,
spec,
c_lengths=lengths,
)
with autocast(enabled=False, dtype=half_type):
# speaker reversak loss
speaker_weight = commons.update_adversarial_weight(
iteration=global_step + 1, warmup_steps=1
)
speaker_loss = F.cross_entropy(speaker_logits, sid) * speaker_weight
# energy loss
energy_loss = F.smooth_l1_loss(energy_pred, energy.detach())
# pitch loss
f0_loss = F.smooth_l1_loss(f0_pred, lf0.detach())
loss_gen_all = diff_loss + prior_loss + f0_loss + energy_loss + speaker_loss
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
ema_model.update(net_g)
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
losses = [diff_loss, prior_loss, f0_loss, speaker_loss]
reference_loss = 0
for i in losses:
reference_loss += i
logger.info(
"Train Epoch: {} [{:.0f}%]".format(
epoch, 100.0 * batch_idx / len(train_loader)
)
)
logger.info(
f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}, reference_loss: {reference_loss}"
)
scalar_dict = {
"loss/g/total": loss_gen_all,
"learning_rate": lr,
"grad_norm_g": grad_norm_g,
}
scalar_dict.update(
{
"loss/g/diff": diff_loss,
"loss/g/prior": prior_loss,
"loss/g/f0": f0_loss,
"loss/g/energy": energy_loss,
"loss/g/speaker": speaker_loss,
}
)
image_dict = {
"all/mel": utils.plot_spectrogram_to_numpy(
spec[0].data.cpu().numpy()
),
"all/f0": utils.plot_data_to_numpy(
lf0[0, 0, :].cpu().numpy(),
f0_pred[0, 0, :].detach().cpu().numpy(),
),
"all/energy": utils.plot_data_to_numpy(
energy[0, 0, :].cpu().numpy(),
energy_pred[0, 0, :].detach().cpu().numpy(),
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_default_{}.pth".format(global_step)),
)
utils.save_checkpoint(
ema_model,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_ema_{}.pth".format(global_step)),
)
keep_ckpts = getattr(hps.train, "keep_ckpts", 0)
if keep_ckpts > 0:
utils.clean_checkpoints(
path_to_models=hps.model_dir,
n_ckpts_to_keep=keep_ckpts,
sort_by_time=True,
)
global_step += 1
if rank == 0:
global start_time
now = time.time()
durtaion = format(now - start_time, ".2f")
logger.info(f"====> Epoch: {epoch}, cost {durtaion} s")
start_time = now
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
with torch.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, lengths, uv, energy, _ = items
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
c = c[:1].cuda(0)
f0 = f0[:1].cuda(0)
uv = uv[:1].cuda(0)
energy = energy[:1].cuda(0)
y_dec, _ = generator.module.infer(c, spec, f0, uv, energy, n_timesteps=10)
image_dict.update(
{
"gt/mel": utils.plot_spectrogram_to_numpy(spec[0].cpu().numpy()),
"pred/y_dec": utils.plot_spectrogram_to_numpy(
y_dec[0][:, : lengths[0]].cpu().numpy()
),
}
)
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate,
)
generator.train()
if __name__ == "__main__":
main()