-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_MLP_embedding_da.py
418 lines (363 loc) · 15.2 KB
/
run_MLP_embedding_da.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.utils.data as Data
from torch.optim import SGD,Adam
from sklearn.metrics import accuracy_score
from sklearn import metrics
#import matplotlib.pyplot as plt
#import hiddenlayer as hl
import os
import merge_embedding_vector
import build_graph_with_embedding
import mmd
import math
import random
from copy import deepcopy
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic=True
class MLPclassifica(nn.Module):
def __init__(self,nfeat):
super(MLPclassifica,self).__init__()
self.hidden1=nn.Sequential(
nn.Linear(
in_features=nfeat,
#in_features=1261,
out_features=16,
bias=True,
),
nn.ReLU()
)
self.hidden2=nn.Sequential(
nn.Linear(16,10),
nn.ReLU()
)
self.classifica=nn.Sequential(
nn.Linear(10,2),
nn.Sigmoid()
)
self.dropout=0.5
def forward(self,x,target): # x is the source input here
loss=0
source=self.hidden1(x)
if self.training==True:
target=self.hidden1(target)
loss+=mmd.mmd_rbf_noaccelerate(source,target)
#fc1=self.hidden1(source)
self.featuremap=source.detach()
fc2=self.hidden2(source)
output=self.classifica(fc2)
return output, loss
def load_data(inmatrixf,inmetaf,train_idx,val_idx,test_idx,disease,wwl):
train_idx=np.array(train_idx)
val_idx=np.array(val_idx)
test_idx=np.array(test_idx)
inmatrix=pd.read_table(inmatrixf)
inmatrix_train=inmatrix.iloc[:,train_idx]
inmatrix_val=inmatrix.iloc[:,val_idx]
inmatrix_test=inmatrix.iloc[:,test_idx]
#print(inmatrix_train,inmatrix_train.shape)
#exit()
#inmatrix=inmatrix.T
#print(inmatrix)
#print(inmatrix.shape)
#exit()
inmeta=pd.read_table(inmetaf)
labels_train=inmeta.loc[train_idx,:]["disease"]
labels_val=inmeta.loc[val_idx,:]["disease"]
labels_test=inmeta.loc[test_idx,:]["disease"]
labels_train=labels_train.to_numpy()
labels_train[labels_train==[disease]]=1
labels_train[labels_train==['healthy']]=0
labels_val=labels_val.to_numpy()
labels_val[labels_val==[disease]]=1
labels_val[labels_val==['healthy']]=0
labels_test=labels_test.to_numpy()
if wwl==1:
labels_test[labels_test==[disease]]=1
labels_test[labels_test==['healthy']]=0
else:
labels_test[labels_test==["Unknown"]]=0
inmatrix_train=inmatrix_train.T
inmatrix_val=inmatrix_val.T
inmatrix_test=inmatrix_test.T
X_train=inmatrix_train.to_numpy()
X_val=inmatrix_val.to_numpy()
X_test=inmatrix_test.to_numpy()
return X_train,X_val,X_test,labels_train,labels_val,labels_test
def AUC(output,labels):
a=output.data.numpy()
preds=a[:,1]
fpr,tpr,thresholds=metrics.roc_curve(np.array(labels),np.array(preds))
auc=metrics.auc(fpr,tpr)
return auc
def accuracy(output,labels):
preds=output.max(1)[1].type_as(labels)
correct=preds.eq(labels).double()
correct=correct.sum()
return correct/len(labels)
def build_graph_mlp(inmatrixf,train_idx,val_idx,inmetaf,disease,fn,odir,test_idx,kneighbor,rseed,wwl,rdir,close_cv,bsize,oin):
if not rseed==0:
setup_seed(rseed)
o=open(odir+'/train_res_stat_Fold'+str(fn)+'.txt','w+')
ofile1=odir+'/feature_out_train_Fold'+str(fn)+'_eggNOG.txt'
if close_cv==0:
ofile2=odir+'/feature_out_val_Fold'+str(fn)+'_eggNOG.txt'
ofile3=odir+'/feature_out_test_Fold'+str(fn)+'_eggNOG.txt'
#print(train_idx,val_idx)
#exit()
# Load datasets
X_train,X_val,X_test,y_train,y_val,y_test=load_data(inmatrixf,inmetaf,train_idx,val_idx,test_idx,disease,wwl)
#print(y_train,y_test)
#exit()
#trans vector to tensor
X_train_nots=torch.from_numpy(X_train.astype(np.float32))
y_train_t=torch.from_numpy(y_train.astype(np.int64))
if close_cv==0:
X_val_nots=torch.from_numpy(X_val.astype(np.float32))
y_val_t=torch.from_numpy(y_val.astype(np.int64))
X_test_nots=torch.from_numpy(X_test.astype(np.float32))
y_test_t=torch.from_numpy(y_test.astype(np.int64))
train_data_nots=Data.TensorDataset(X_train_nots,y_train_t)
test_data_nots=Data.TensorDataset(X_test_nots,y_test_t)
train_nots_loader=Data.DataLoader(
dataset=train_data_nots,
batch_size=bsize,
shuffle=True,
num_workers=0,
drop_last=True,
)
test_nots_loader_train=Data.DataLoader(
dataset=test_data_nots,
batch_size=bsize,
shuffle=True,
num_workers=0,
drop_last=True,
)
test_nots_loader_test=Data.DataLoader(
dataset=test_data_nots,
batch_size=bsize,
shuffle=True,
num_workers=0,
drop_last=True,
)
max_val_acc=0
max_val_auc=0
max_train_acc=0
max_train_auc=0
max_test_acc=0
max_test_auc=0
go=0
for i in range(10):
best_auc=0
best_acc=0
model_raw=MLPclassifica(nfeat=X_train.shape[1])
optimizer=torch.optim.Adam(model_raw.parameters(),lr=0.01,weight_decay=1e-5)
loss_func=nn.CrossEntropyLoss()
#history1=hl.History()
#canvas1=hl.Canvas()
print_step=25
src_iter=iter(train_nots_loader)
tgt_iter=iter(test_nots_loader_train)
for epoch in range(1,100+1):
model_raw.train()
try:
src_data,src_label=src_iter.next()
except Exception as err:
src_iter=iter(train_nots_loader)
src_data, src_label = src_iter.next()
try:
tgt_data,_=tgt_iter.next()
except Exception as err:
tgt_iter=iter(test_nots_loader_train)
tgt_data,_=tgt_iter.next()
#print(tgt_data.shape)
optimizer.zero_grad()
src_pred,mmd_loss=model_raw(src_data,tgt_data)
#print(mmd_loss)
#exit()
cls_loss=loss_func(src_pred,src_label)
lambd=2 / (1 + math.exp(-10 * (epoch) / 100)) - 1
loss=cls_loss+lambd*mmd_loss
loss.backward()
optimizer.step()
#print(src_pred)
#src_pred=src_pred.detach().numpy()
#print(src_label)
#exit()
train_acc=accuracy(src_pred,src_label)
#print(train_acc)
#exit()
if wwl==1:
model_raw.eval()
out, ml = model_raw(X_test_nots, tgt_data)
test_auc=AUC(out,y_test_t)
test_acc=accuracy(out,y_test_t)
if epoch % 10 ==0 and close_cv==0:
if wwl==0:
model_raw.eval()
out,ml=model_raw(X_val_nots,tgt_data)
val_acc=accuracy(out,y_val_t)
print('Train iter: {} [({:.0f}%)]\tLoss: {:.6f}\tsoft_Loss: {:.6f}\tmmd_Loss: {:.6f}\tTrain_accuracy:'.format(epoch, 100. * epoch / 100, loss.item(), cls_loss.item(), mmd_loss.item()),train_acc)
print('Validation_accuracy:',val_acc)
elif epoch % 10 ==0:
print('Train iter: {} [({:.0f}%)]\tLoss: {:.6f}\tsoft_Loss: {:.6f}\tmmd_Loss: {:.6f}\tTrain_accuracy:'.format(epoch, 100. * epoch / 100, loss.item(), cls_loss.item(), mmd_loss.item()),train_acc)
if wwl==1:
if float(test_auc)>float(best_auc):
best_auc=float(test_auc)
model=deepcopy(model_raw)
if len(y_test_t)<13:
if go==0 and float(best_acc)==0:
model=deepcopy(model_raw)
go=1
if float(test_acc)>float(best_acc):
best_acc=float(test_acc)
model=deepcopy(model_raw)
else:
model=deepcopy(model_raw)
'''
for step, (b_x, b_y) in enumerate(train_nots_loader):
_,_,output=mlpc(b_x)
ftr1=mlpc.featuremap.cpu()
_,_,output_t2=mlpc(X_train_nots)
ftr1=mlpc.featuremap.cpu()
_,_,output_t2=mlpc(X_val_nots)
ftv1=mlpc.featuremap.cpu()
_,_,output_t2=mlpc(X_test_nots)
fte1=mlpc.featuremap.cpu()
x = torch.cat([ftr1, ftv1, fte1], dim=0)
temx=np.array(x)
mu=np.mean(temx,axis=0)
var=np.var(temx,axis=0)
mu=torch.FloatTensor(mu)
var=torch.FloatTensor(var)
train_loss=0.5*loss_func(output,b_y)+0.5*kl_gaussian_loss(mu,var)
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
niter=epoch*len(train_nots_loader)+step+1
#feature_output=mlpc.featuremap.cpu()
#feature_out=np.array(feature_output)
if niter%print_step==0:
_,_,output=mlpc(X_val_nots)
_,pre_lab=torch.max(output,1)
val_accuracy=accuracy_score(y_val_t,pre_lab)
val_auc=AUC(output,y_val_t)
_,_,output=mlpc(X_test_nots)
_,pre_lab=torch.max(output,1)
test_accuracy=accuracy_score(y_test_t,pre_lab)
test_auc=AUC(output,y_test_t)
#print(niter,test_accuracy)
history1.log(niter,train_loss=train_loss,test_accuracy=test_accuracy,test_AUC=test_auc)
with canvas1:
canvas1.draw_plot(history1["train_loss"])
canvas1.draw_plot(history1["test_accuracy"])
canvas1.draw_plot(history1["test_AUC"])
'''
#exit()
#plt.savefig(odir+"/result.png",dpi=400)
######### Test the model ##########
model.eval()
output,mmd_loss=model(X_train_nots,X_test_nots)
#_,pre_lab=torch.max(output,1)
feature_output=model.featuremap.cpu()
feature_out=np.array(feature_output)
train_acc=accuracy(output,y_train_t)
train_auc=AUC(output,y_train_t)
print("train_accuracy:",train_acc,"train_AUC:",train_auc)
if close_cv==0:
output,mmd_loss=model(X_val_nots,X_test_nots)
#_,pre_lab=torch.max(output,1)
feature_output_val=model.featuremap.cpu()
feature_out_val=np.array(feature_output_val)
val_accuracy=accuracy(output,y_val_t)
val_auc=AUC(output,y_val_t)
print("val_accuracy:",val_accuracy,"val_AUC:",val_auc)
output,mmd_loss=model(X_test_nots,X_test_nots)
#_,pre_lab=torch.max(output,1)
feature_output_test=model.featuremap.cpu()
feature_out_test=np.array(feature_output_test)
if wwl==1:
test_accuracy=accuracy(output,y_test_t)
test_auc=AUC(output,y_test_t)
if oin==0:
print("test_accuracy:",test_accuracy,"test_AUC:",test_auc)
#exit()
if close_cv==0:
o.write("Train accuracy: "+str(train_acc)+" Train AUC: "+str(train_auc)+"\nVal accuracy: "+str(val_accuracy)+" Val AUC: "+str(val_auc)+"\nTest accuracy: "+str(test_accuracy)+" Test AUC: "+str(test_auc)+'\n')
else:
o.write("Train accuracy: "+str(train_acc)+" Train AUC: "+str(train_auc)+"\nTest accuracy: "+str(test_accuracy)+" Test AUC: "+str(test_auc)+'\n')
'''
if len(y_test_t)<13:
if go==0:
max_test_acc=test_accuracy
max_test_auc=test_auc
np.savetxt(ofile1,feature_out)
if close_cv==0:
np.savetxt(ofile2,feature_out_val)
np.savetxt(ofile3,feature_out_test)
go=1
if test_acc>max_test_acc:
max_test_acc=test_accuracy
max_test_auc=test_auc
np.savetxt(ofile1,feature_out)
if close_cv==0:
np.savetxt(ofile2,feature_out_val)
np.savetxt(ofile3,feature_out_test)
'''
if True:
if test_auc>max_test_auc:
max_test_acc=test_accuracy
max_test_auc=test_auc
np.savetxt(ofile1,feature_out)
if close_cv==0:
np.savetxt(ofile2,feature_out_val)
np.savetxt(ofile3,feature_out_test)
if test_auc==max_test_auc and test_accuracy>max_test_acc:
max_test_acc=test_accuracy
max_test_auc=test_auc
np.savetxt(ofile1,feature_out)
if close_cv==0:
np.savetxt(ofile2,feature_out_val)
np.savetxt(ofile3,feature_out_test)
else:
if close_cv==0:
o.write("Train accuracy: "+str(train_acc)+" Train AUC: "+str(train_auc)+"\nVal accuracy: "+str(val_accuracy)+" Val AUC: "+str(val_auc)+'\n')
if val_auc>max_val_auc:
max_val_acc=val_accuracy
max_val_auc=val_auc
np.savetxt(ofile1,feature_out)
np.savetxt(ofile2,feature_out_val)
np.savetxt(ofile3,feature_out_test)
if val_auc==max_val_auc and val_accuracy>max_val_acc:
max_val_acc=val_accuracy
max_val_auc=val_auc
np.savetxt(ofile1,feature_out)
np.savetxt(ofile2,feature_out_val)
np.savetxt(ofile3,feature_out_test)
else:
o.write("Train accuracy: "+str(train_acc)+" Train AUC: "+str(train_auc)+"\n")
if train_auc>max_train_auc:
max_train_acc=train_acc
max_train_auc=train_auc
np.savetxt(ofile1,feature_out)
np.savetxt(ofile3,feature_out_test)
if train_auc==max_train_auc and train_acc>max_train_acc:
max_train_acc=train_acc
max_train_auc=train_auc
np.savetxt(ofile1,feature_out)
np.savetxt(ofile3,feature_out_test)
if close_cv==0:
merge_embedding_vector.merge(ofile1,ofile2,ofile3,train_idx,val_idx,test_idx,odir+'/merge_embedding_Fold'+str(fn)+'.txt')
else:
merge_embedding_vector.merge2(ofile1,ofile3,train_idx,test_idx,odir+'/merge_embedding_Fold'+str(fn)+'.txt')
build_graph_with_embedding.build(odir+'/merge_embedding_Fold'+str(fn)+'.txt',inmetaf,'eggNOG',odir+'/Fold'+str(fn),kneighbor,rdir+"/sample_kneighbors_all_fold"+str(fn)+".txt")
graph=odir+'/Fold'+str(fn)+'/P3_build_graph/eggNOG_pca_knn_graph_final.txt'
return graph
#graph=build_graph_mlp('../New_datasets/T2D_data_2012_Trans/T2D_eggNOG_norm.txt',list(range(340)),list(range(340,363)),'../New_datasets/T2D_data_2012_Trans/T2D_meta.tsv','T2D',1,'T2D_result/Graph_File')
#print(graph)