-
Notifications
You must be signed in to change notification settings - Fork 0
/
CalibarateCamera.py
84 lines (72 loc) · 2.92 KB
/
CalibarateCamera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import matplotlib.pyplot as plt
import cv2
import glob
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# 方格的宽度,单位mm
square_size = 27.5
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((9 * 6, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2) * square_size
# objp[:,2:3]=10
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('./frame_name/*.png')
index = 0
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
print(ret)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners2)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (9, 6), corners2, ret)
cv2.imshow('img' + str(index), img)
index = index + 1
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print(ret)
print(mtx)
print(dist)
print(len(rvecs), rvecs[-1])
print(len(tvecs), tvecs[-1])
tot_error = 0
for i in range(len(imgpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
tot_error += error
average_error = (tot_error / len(imgpoints)) ** 0.5
print(ret, average_error)
# 畸变矫正部分程序
for fname in images:
img = cv2.imread(fname)
rows, cols = img.shape[:2]
newcamera_mtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (cols, rows), 0)
img_undistort = cv2.undistort(img, mtx, dist, None, newcamera_mtx)
x, y, cols, rows = roi
img_undistort = img_undistort[y:y + rows, x:x + cols]
print(roi)
plt.subplot(121), plt.imshow(img), plt.title("img")
plt.subplot(122), plt.imshow(img_undistort), plt.title("img_undistort")
plt.show()
# 畸变矫正部分(2)程序
for fname in images:
img = cv2.imread(fname)
rows, cols = img.shape[:2]
newcamera_mtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (cols, rows), 1)
img_undistort = cv2.undistort(img, mtx, dist, None)
map_x, map_y = cv2.initUndistortRectifyMap(mtx, dist, None, newcamera_mtx, (cols, rows), 5)
img_undistort = cv2.remap(img, map_x, map_y, cv2.INTER_LINEAR)
print(map_x.shape)
print(map_y)
plt.subplot(121), plt.imshow(img), plt.title("img")
plt.subplot(122), plt.imshow(img_undistort), plt.title("img_undistort")
plt.show()
if cv2.waitKey(1000 * 60) & 0xFF == ord('q'):
cv2.destroyAllWindows()