Skip to content

Latest commit

 

History

History
executable file
·
258 lines (224 loc) · 12.4 KB

README.md

File metadata and controls

executable file
·
258 lines (224 loc) · 12.4 KB

Lighthouse

Contributions welcome License Hugging Face Spaces Run pytest Run mypy and ruff

Lighthouse is a user-friendly library for reproducible video moment retrieval and highlight detection (MR-HD). It supports seven models, four features (video and audio features), and six datasets for reproducible MR-HD, MR, and HD. In addition, we prepare an inference API and Gradio demo for developers to use state-of-the-art MR-HD approaches easily. Furthermore, Lighthouse supports audio moment retrieval, a task to identify relevant moments from an audio input based on a given text query.

News

Installation

Install ffmpeg first. If you are an Ubuntu user, run:

apt install ffmpeg

Then, install pytorch, torchvision, torchaudio, and torchtext based on your GPU environments. Note that the inference API is available for CPU environments. We tested the codes on Python 3.9 and CUDA 11.8:

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 torchtext==0.16.0 --index-url https://download.pytorch.org/whl/cu118

Finally, run to install dependency libraries:

pip install 'git+https://github.com/line/lighthouse.git'

Inference API (Available for both CPU/GPU mode)

Lighthouse supports the following inference API:

import torch
from lighthouse.models import CGDETRPredictor

# use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"

# slowfast_path is necesary if you use clip_slowfast features
query = 'A man is speaking in front of the camera'
model = CGDETRPredictor('results/cg_detr/qvhighlight/clip_slowfast/best.ckpt', device=device,
                        feature_name='clip_slowfast', slowfast_path='SLOWFAST_8x8_R50.pkl')

# encode video features
model.encode_video('api_example/RoripwjYFp8_60.0_210.0.mp4')

# moment retrieval & highlight detection
prediction = model.predict(query)
print(prediction)
"""
pred_relevant_windows: [[start, end, score], ...,]
pred_saliency_scores: [score, ...]

{'query': 'A man is speaking in front of the camera',
 'pred_relevant_windows': [[117.1296, 149.4698, 0.9993],
                           [-0.1683, 5.4323, 0.9631],
                           [13.3151, 23.42, 0.8129],
                           ...],
 'pred_saliency_scores': [-10.868017196655273,
                          -12.097496032714844,
                          -12.483806610107422,
                          ...]}
"""

Run python api_example/demo.py to reproduce the results. It automatically downloads pre-trained weights for CG-DETR (CLIP backbone). If you want to use other models, download pre-trained weights. When using clip_slowfast features, it is necessary to download slowfast pre-trained weights. When using clip_slowfast_pann features, in addition to the slowfast weight, download panns weights. Run python api_example/amr_demo.py to reproduce the AMR results.

Limitation: The maximum video duration is 150s due to the current benchmark datasets. For CPU users, set feature_name='clip' because CLIP+Slowfast or CLIP+Slowfast+PANNs features are very slow without GPUs.

Gradio demo

Run python gradio_demo/demo.py. Upload the video and input text query, and click the blue button. For AMR demo, run python gradio_demo/amr_demo.py.

Gradio demo image

Supported models, datasets, and features

Models

Moment retrieval & highlight detection

Datasets

Moment retrieval & highlight detection

Moment retrieval

Highlight detection

Audio moment retrieval

Features

  • : ResNet+GloVe
  • : CLIP
  • : CLIP+Slowfast
  • : CLIP+Slowfast+PANNs (Audio) for QVHighlights
  • : I3D+CLIP (Text) for TVSum

Reproduce the experiments

Pre-trained weights

Pre-trained weights can be downloaded from here. Download and unzip on the home directory.

Datasets

Due to the copyright issue, we here distribute only feature files. Download and place them under ./features directory. To extract features from videos, we use HERO_Video_Feature_Extractor.

For AMR, download features from here.

The whole directory should be look like this:

lighthouse/
├── api_example
├── configs
├── data
├── features # Download the features and place them here
│   ├── ActivityNet
│   │   ├── clip
│   │   ├── clip_text
│   │   ├── resnet
│   │   └── slowfast
│   ├── Charades
│   │   ├── clip
│   │   ├── clip_text
│   │   ├── resnet
│   │   ├── slowfast
│   ├── QVHighlight
│   │   ├── clip
│   │   ├── clip_text
│   │   ├── pann
│   │   ├── resnet
│   │   └── slowfast
│   ├── tacos
│   │   ├── clip
│   │   ├── clip_text
│   │   ├── resnet
│   │   └── slowfast
│   ├── tvsum
│   │   ├── clip
│   │   ├── clip_text
│   │   ├── i3d
│   │   ├── resnet
│   │   ├── slowfast
│   ├── youtube_highlight
│   │   ├── clip
│   │   ├── clip_text
│   │   └── slowfast
│   └── clotho-moments
│       ├── clap
│       └── clap_text
├── gradio_demo
├── images
├── lighthouse
├── results # The pre-trained weights are saved in this directory
└── training

Training and evaluation

Training

The training command is:

python training/train.py --model MODEL --dataset DATASET --feature FEATURE [--resume RESUME] [--domain DOMAIN]
Options
Model moment_detr, qd_detr, eatr, cg_detr, uvcom, tr_detr, taskweave_mr2hd, taskweave_hd2mr
Feature resnet_glove, clip, clip_slowfast, clip_slowfast_pann, i3d_clip, clap
Dataset qvhighlight, qvhighlight_pretrain, activitynet, charades, tacos, tvsum, youtube_highlight, clotho-moment

(Example 1) Moment DETR w/ CLIP+Slowfast on QVHighlights:

python training/train.py --model moment_detr --dataset qvhighlight --feature clip_slowfast

(Example 2) Moment DETR w/ CLIP+Slowfast+PANNs (Audio) on QVHighlights:

python training/train.py --model moment_detr --dataset qvhighlight --feature clip_slowfast_pann

(Pre-train & Fine-tuning, QVHighlights only) Lighthouse supports pre-training. Run:

python training/train.py --model moment_detr --dataset qvhighlight_pretrain --feature clip_slowfast

Then fine-tune the model with --resume option:

python training/train.py --model moment_detr --dataset qvhighlight --feature clip_slowfast --resume results/moment_detr/qvhighlight_pretrain/clip_slowfast/best.ckpt

(TVSum and YouTube Highlight) To train models on these two datasets, you need to specify domain:

python training/train.py --model moment_detr --dataset tvsum --feature clip_slowfast --domain BK

Evaluation

The evaluation command is:

python training/evaluate.py --model MODEL --dataset DATASET --feature FEATURE --split {val,test} --model_path MODEL_PATH --eval_path EVAL_PATH [--domain DOMAIN]

(Example 1) Evaluating Moment DETR w/ CLIP+Slowfast on the QVHighlights val set:

python training/evaluate.py --model moment_detr --dataset qvhighlight --feature clip_slowfast --split val --model_path results/moment_detr/qvhighlight/clip_slowfast/best.ckpt --eval_path data/qvhighlight/highlight_val_release.jsonl

To generate submission files for QVHighlight test sets, change split into test (QVHighlights only):

python training/evaluate.py --model moment_detr --dataset qvhighlight --feature clip_slowfast --split test --model_path results/moment_detr/qvhighlight/clip_slowfast/best.ckpt --eval_path data/qvhighlight/highlight_test_release.jsonl

Then zip hl_val_submission.jsonl and hl_test_submission.jsonl, and submit it to the Codalab (QVHighlights only):

zip -r submission.zip val_submission.jsonl test_submission.jsonl

Citation

@InProceedings{taichi2024emnlp,
  author    = {Taichi Nishimura and Shota Nakada and Hokuto Munakata and Tatsuya Komatsu},
  title     = {Lighthouse: A User-Friendly Library for Reproducible Video Moment Retrieval and Highlight Detection},
  booktitle = {Proceedings of The 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year      = {2024},
}

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

LICENSE

Apache License 2.0

Contact

Taichi Nishimura (taichitary@gmail.com)