forked from LimHyungTae/paper_quality_plot.matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_cdf.m
182 lines (140 loc) · 7.41 KB
/
plot_cdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
%% CDF
clc
close all;
clear all;
%% Color parameter
num_objects = 5;
linecolors = linspecer(num_objects, 'qualitative');
LineColors = flipud(linecolors);
%% Load output file
i_t = ["elements", "all"];
m_t = ["RNN", "GRU", "LSTM"];
format_name = "materials/output_csvs/a%db%d_%s_%s_EAV2_%d_output.csv";
format_name2 = "materials/0425_seqv2/a%d_%s_%s_EAV2_%d_output.csv";
a_error_m = []; a_error_Re = []; a_error_Ra = []; a_error_Le = []; a_error_La = [];
b_error_m = []; b_error_Re = []; b_error_Ra = []; b_error_Le = []; b_error_La = [];
data_names = [1,3,6];
disp("Loading data...");
for data_name = data_names
% Load RNN - Elements
a_seq = 12;
alpha_csvname = sprintf(format_name2, a_seq, m_t(1), i_t(1), data_name);
RNN_e.alpha = parseCSV(alpha_csvname, a_seq, "alpha");
a_seq_tmp = 7; % just for loading file
b_seq = 32;
beta_csvname = sprintf(format_name, a_seq_tmp, b_seq, m_t(1), i_t(1), data_name);
RNN_e.beta = parseCSV(beta_csvname, b_seq, "beta");
% Load RNN - All
alpha_csvname = sprintf(format_name2, a_seq, m_t(1), i_t(2), data_name);
RNN_a.alpha = parseCSV(alpha_csvname, a_seq, "alpha");
a_seq_tmp = 7; % just for loading file
beta_csvname = sprintf(format_name, a_seq_tmp, b_seq, m_t(1), i_t(2), data_name);
RNN_a.beta = parseCSV(beta_csvname, b_seq, "beta");
% Load LSTM - Elements
a_seq = 12;
alpha_csvname = sprintf(format_name2, a_seq, m_t(3), i_t(1), data_name);
LSTM_e.alpha = parseCSV(alpha_csvname, a_seq, "alpha");
a_seq_tmp = 12; % just for loading file
b_seq = 64;
beta_csvname = sprintf(format_name, a_seq_tmp, b_seq, m_t(3), i_t(1), data_name);
LSTM_e.beta = parseCSV(beta_csvname, b_seq, "beta");
% Load LSTM - All
a_seq = 12;
alpha_csvname = sprintf(format_name2, a_seq, m_t(3), i_t(2),data_name);
LSTM_a.alpha = parseCSV(alpha_csvname, a_seq, "alpha");
format_name3 = "materials/output_csvs/b%d_%s_%s_EAV2_%d_output.csv";
b_seq = 36;
beta_csvname = sprintf(format_name3, b_seq, m_t(3), i_t(2), data_name);
LSTM_a.beta = parseCSV(beta_csvname, b_seq, "beta");
%% For getting result for model aided
% Set C.L
C.L = [0.53, 2.85];
% Load target csv
format_name4 = sprintf("materials/output_csvs/EAV2_%d.csv", data_name);
csv = parseRawCSV(format_name4);
Model = calcModelAidedOutput(csv, C.L);
%% Calculate Absolute Errors
% Alpha error
error_m = abs(Model.a_gt_reshaped - Model.a_pred_reshaped);
error_Re = abs(RNN_e.alpha.a_gt - RNN_e.alpha.a_pred);
error_Ra = abs(RNN_a.alpha.a_gt - RNN_a.alpha.a_pred);
error_Le = abs(LSTM_e.alpha.a_gt - LSTM_e.alpha.a_pred);
error_La = abs(LSTM_a.alpha.a_gt - LSTM_a.alpha.a_pred);
a_error_m = [a_error_m; error_m];
a_error_Re = [a_error_Re; error_Re]; a_error_Ra = [a_error_Ra; error_Ra];
a_error_Le = [a_error_Le; error_Le]; a_error_La = [a_error_La; error_La];
% Beta error
diff_seq = 26; % b_seq - a_seq + 1
error_m = abs(Model.b_gt_reshaped - Model.b_pred_reshaped);
error_Re = abs(RNN_e.beta.b_gt(diff_seq:end) - RNN_e.beta.b_pred(diff_seq:end));
error_Ra = abs(RNN_a.beta.b_gt(diff_seq:end) - RNN_a.beta.b_pred(diff_seq:end));
diff_seq2 = 53; % b_seq - a_seq + 1
error_Le = abs(LSTM_e.beta.b_gt(diff_seq2:end) - LSTM_e.beta.b_pred(diff_seq2:end));
error_La = abs(LSTM_a.beta.b_gt - LSTM_a.beta.b_pred);
b_error_m = [b_error_m; error_m];
b_error_Re = [b_error_Re; error_Re]; b_error_Ra = [b_error_Ra; error_Ra];
b_error_Le = [b_error_Le; error_Le]; b_error_La = [b_error_La; error_La];
end
disp("Loading data complete");
%% Plot parameters;
MAX_RANGE = 0.012; % --------------- TO BE SET ---------------
INTERVAL = 1000; % --------------- TO BE SET ---------------
lindwidth = 1.5;
LegendFontSize = 13;
XLabelFontSize = 12; YLabelFontSize = 12;
%% Draw cdf of alpha:
figure("name", "alpha");
set(gca,'LooseInset', max(get(gca,'TightInset'), 0.02))
set(groot, 'defaultAxesTickLabelInterpreter','latex');
disp("Drawing cdf of alpha...");
gap = MAX_RANGE / 1000;
x_linspace = 0:gap:MAX_RANGE;
x_linspace = x_linspace * 180.0 / pi; % rad to angle
a_m_cum = calcCDF(a_error_m, MAX_RANGE, INTERVAL) * 100;
a_re_cum = calcCDF(a_error_Re, MAX_RANGE, INTERVAL) * 100;
a_ra_cum = calcCDF(a_error_Ra, MAX_RANGE, INTERVAL) * 100;
a_le_cum = calcCDF(a_error_Le, MAX_RANGE, INTERVAL) * 100;
a_la_cum = calcCDF(a_error_La, MAX_RANGE, INTERVAL) * 100;
plot(x_linspace, a_re_cum, '--o', 'Color', LineColors(1, :), 'LineWidth', lindwidth, 'MarkerIndices',1:50:length(x_linspace));
hold on;
% plot(x_linspace, e_ge_cum,'--+','MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, a_le_cum,'--s', 'Color', LineColors(2, :), 'LineWidth', lindwidth, 'MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, a_m_cum, '-^', 'Color', LineColors(3, :), 'LineWidth', lindwidth, 'MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, a_ra_cum, '-o', 'Color', LineColors(4, :), 'LineWidth', lindwidth, 'MarkerIndices',1:50:length(x_linspace));
% plot(x_linspace, e_ga_cum, '-+','MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, a_la_cum, '-s', 'Color', LineColors(5, :), 'LineWidth', lindwidth, 'MarkerIndices',1:50:length(x_linspace));
lgd = legend({'RNN-\texttt{Minimal}','LSTM-\texttt{Minimal}', 'Model-aided', 'RNN-\texttt{All}','LSTM-\texttt{All}'},'Location','southeast','NumColumns',2, 'fontsize', LegendFontSize);
lgd.Interpreter = 'latex';
grid on;
xlabel('Absolute Error (deg)', "FontSize", XLabelFontSize, "Interpreter", 'latex')
ylabel('Percentage (\%)', "FontSize", YLabelFontSize, "Interpreter", 'latex')
saveas(gcf,"imgs/total_cdf_alpha.png");
% print -depsc 'imgs/total_cdf_alpha.eps'
disp("Drawing cdf of alpha complete");
%% Draw cdf of beta:
figure("name", "beta");
set(gca,'LooseInset', max(get(gca,'TightInset'), 0.02))
set(groot, 'defaultAxesTickLabelInterpreter','latex');
MAX_RANGE = 0.05; % --------------- TO BE SET ---------------
disp("Drawing cdf of beta...");
gap = MAX_RANGE / 1000;
x_linspace = 0:gap:MAX_RANGE;
x_linspace = x_linspace * 180.0 / pi; % rad to angle
b_m_cum = calcCDF(b_error_m, MAX_RANGE, INTERVAL) * 100;
b_re_cum = calcCDF(b_error_Re, MAX_RANGE, INTERVAL) * 100;
b_ra_cum = calcCDF(b_error_Ra, MAX_RANGE, INTERVAL) * 100;
b_le_cum = calcCDF(b_error_Le, MAX_RANGE, INTERVAL) * 100;
b_la_cum = calcCDF(b_error_La, MAX_RANGE, INTERVAL) * 100;
plot(x_linspace, b_re_cum, '--o', 'Color', LineColors(1, :), 'LineWidth', lindwidth, 'MarkerIndices',1:50:length(x_linspace));
hold on;
plot(x_linspace, b_le_cum,'--s', 'Color', LineColors(2, :), 'LineWidth', lindwidth,'MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, b_m_cum, '-^', 'Color', LineColors(3, :), 'LineWidth', lindwidth,'MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, b_ra_cum, '-o', 'Color', LineColors(4, :), 'LineWidth', lindwidth,'MarkerIndices',1:50:length(x_linspace));
plot(x_linspace, b_la_cum, '-s', 'Color', LineColors(5, :), 'LineWidth', lindwidth,'MarkerIndices',1:50:length(x_linspace));
lgd = legend({'RNN-\texttt{Minimal}', 'LSTM-\texttt{Minimal}', 'Model-aided\texttt{}', 'RNN-\texttt{All}','LSTM-\texttt{All}'},'Location','southeast','NumColumns',2, 'fontsize', LegendFontSize);
lgd.Interpreter = 'latex';
grid on;
xlabel('Absolute Error (deg)', "FontSize", XLabelFontSize, "Interpreter", 'latex')
ylabel('Percentage (\%)', "FontSize", YLabelFontSize, "Interpreter", 'latex')
saveas(gcf,"imgs/total_cdf_beta.png");
disp("Drawing cdf of beta complete");