forked from georgesung/advanced_lane_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathline_fit_video.py
113 lines (93 loc) · 3.66 KB
/
line_fit_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pickle
from combined_thresh import combined_thresh
from perspective_transform import perspective_transform
from Line import Line
from line_fit import line_fit, tune_fit, final_viz, calc_curve, calc_vehicle_offset
from moviepy.editor import VideoFileClip
# Global variables (just to make the moviepy video annotation work)
with open('calibrate_camera.p', 'rb') as f:
save_dict = pickle.load(f)
mtx = save_dict['mtx']
dist = save_dict['dist']
window_size = 5 # how many frames for line smoothing
left_line = Line(n=window_size)
right_line = Line(n=window_size)
detected = False # did the fast line fit detect the lines?
left_curve, right_curve = 0., 0. # radius of curvature for left and right lanes
left_lane_inds, right_lane_inds = None, None # for calculating curvature
# MoviePy video annotation will call this function
def annotate_image(img_in):
"""
Annotate the input image with lane line markings
Returns annotated image
"""
global mtx, dist, left_line, right_line, detected
global left_curve, right_curve, left_lane_inds, right_lane_inds
# Undistort, threshold, perspective transform
undist = cv2.undistort(img_in, mtx, dist, None, mtx)
img, abs_bin, mag_bin, dir_bin, hls_bin = combined_thresh(undist)
binary_warped, binary_unwarped, m, m_inv = perspective_transform(img)
# Perform polynomial fit
if not detected:
# Slow line fit
ret = line_fit(binary_warped)
left_fit = ret['left_fit']
right_fit = ret['right_fit']
nonzerox = ret['nonzerox']
nonzeroy = ret['nonzeroy']
left_lane_inds = ret['left_lane_inds']
right_lane_inds = ret['right_lane_inds']
# Get moving average of line fit coefficients
left_fit = left_line.add_fit(left_fit)
right_fit = right_line.add_fit(right_fit)
# Calculate curvature
left_curve, right_curve = calc_curve(left_lane_inds, right_lane_inds, nonzerox, nonzeroy)
detected = True # slow line fit always detects the line
else: # implies detected == True
# Fast line fit
left_fit = left_line.get_fit()
right_fit = right_line.get_fit()
ret = tune_fit(binary_warped, left_fit, right_fit)
left_fit = ret['left_fit']
right_fit = ret['right_fit']
nonzerox = ret['nonzerox']
nonzeroy = ret['nonzeroy']
left_lane_inds = ret['left_lane_inds']
right_lane_inds = ret['right_lane_inds']
# Only make updates if we detected lines in current frame
if ret is not None:
left_fit = ret['left_fit']
right_fit = ret['right_fit']
nonzerox = ret['nonzerox']
nonzeroy = ret['nonzeroy']
left_lane_inds = ret['left_lane_inds']
right_lane_inds = ret['right_lane_inds']
left_fit = left_line.add_fit(left_fit)
right_fit = right_line.add_fit(right_fit)
left_curve, right_curve = calc_curve(left_lane_inds, right_lane_inds, nonzerox, nonzeroy)
else:
detected = False
vehicle_offset = calc_vehicle_offset(undist, left_fit, right_fit)
# Perform final visualization on top of original undistorted image
result = final_viz(undist, left_fit, right_fit, m_inv, left_curve, right_curve, vehicle_offset)
return result
def annotate_video(input_file, output_file):
""" Given input_file video, save annotated video to output_file """
video = VideoFileClip(input_file)
annotated_video = video.fl_image(annotate_image)
annotated_video.write_videofile(output_file, audio=False)
if __name__ == '__main__':
# Annotate the video
annotate_video('project_video.mp4', 'out.mp4')
# Show example annotated image on screen for sanity check
img_file = 'test_images/test2.jpg'
img = mpimg.imread(img_file)
result = annotate_image(img)
result = annotate_image(img)
result = annotate_image(img)
plt.imshow(result)
plt.show()