-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
68 lines (61 loc) · 2.79 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import openai
import torch
from retry import retry
from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline, set_seed, logging
from prompting_utils import prompts, user_names, assistant_names, task_prediction_prompt
from secret_key import key
openai.api_key = key # You will need your own OpenAI API key.
logging.FATAL
def load_model(model_type):
if model_type=="koala-13B":
tokenizer = LlamaTokenizer.from_pretrained(f"models/koala_13B_vanilla")
model = LlamaForCausalLM.from_pretrained(f"models/koala_13B_vanilla", load_in_8bit=True,
torch_dtype=torch.float16, device_map='auto')
elif model_type=="vicuna-13B":
tokenizer = LlamaTokenizer.from_pretrained(f"models/vicuna-13b-1.1")
model = LlamaForCausalLM.from_pretrained(f"models/vicuna-13b-1.1", load_in_8bit=True,
torch_dtype=torch.float16, device_map='auto')
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512,
temperature=0.7, top_p=0.95, repetition_penalty=1.15)
return pipe
@retry()
def create_response(messages, model_type, pipe, task_prompt=""):
if model_type == "gpt-3.5-turbo":
api_response = openai.ChatCompletion.create(
model=model_type,
messages=messages,
)
bot_utterance = api_response['choices'][0]['message']['content']
else:
prompt = prompts[model_type].format(extract_turns(messages, model_type), task_prompt)
#print(prompt)
set_seed(42)
response = pipe(prompt, do_sample=True, return_full_text=False)
bot_utterance = response[0]['generated_text']
if f"{user_names[model_type]}:" in bot_utterance:
bot_utterance = bot_utterance.split(f"{user_names[model_type]}:")[0]
return bot_utterance.strip()
def extract_turns(messages, model_type):
previous_context = [turn for turn in messages if turn["role"] == "assistant" or turn["role"] == "user"]
if len(previous_context) > 10:
previous_context = previous_context[-10:]
context_string = []
for turn in previous_context:
if turn["role"] == "user":
context_string.append(f"{user_names[model_type]}: {turn['content']}")
elif turn["role"] == "assistant":
context_string.append(f"{assistant_names[model_type]}: {turn['content']}")
extracted_turns = " ".join(context_string)
return extracted_turns
@retry()
def label_tasks(context):
response = openai.Completion.create(
model="text-davinci-003",
prompt=task_prediction_prompt.format(context),
temperature=0.5,
max_tokens=64,
top_p=1,
frequency_penalty=1,
presence_penalty=1,
)
return response['choices'][0]['text']