-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmake_traindata1.py
executable file
·111 lines (97 loc) · 4.2 KB
/
make_traindata1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
import tensorflow as tf
my_devices = tf.config.list_physical_devices(device_type='CPU')
tf.config.set_visible_devices(devices= my_devices, device_type='CPU')
import numpy as np
from PIL import Image
import os
import glob
from multiprocessing import Pool
import concurrent.futures
from render_font.generate_random_txt import get_random_text
from render_font.get_aozora import decode_ruby
from const import samples_per_file
tfdata_path = 'train_data1'
def count_prevfile(train=True):
if train:
prev_files = sorted(glob.glob(os.path.join(tfdata_path,'train*.tfrecords')))
if len(prev_files) > 0:
k = int(os.path.splitext(os.path.basename(prev_files[-1]))[0][-8:]) + 1
else:
k = 0
else:
prev_files = sorted(glob.glob(os.path.join(tfdata_path,'test*.tfrecords')))
if len(prev_files) > 0:
k = int(os.path.splitext(os.path.basename(prev_files[-1]))[0][-8:]) + 1
else:
k = 0
return k
def get_filepath(k, train=True):
os.makedirs(tfdata_path, exist_ok=True)
if train:
filename = os.path.join(tfdata_path,'train%08d.tfrecords'%k)
else:
filename = os.path.join(tfdata_path,'test%08d.tfrecords'%k)
return filename
def process(i):
global rng
print(i)
while True:
try:
d = get_random_text(rng)
if np.count_nonzero(d['image']) == 0:
continue
if d['image'].shape[0] >= (1 << 27) or d['image'].shape[1] >= (1 << 27) or d['image'].shape[0] * d['image'].shape[1] >= (1 << 29):
continue
print(i,'done')
return d
except Exception as e:
print(e,i,'error')
continue
def write_data(k, p, train=True):
with tf.io.TFRecordWriter(get_filepath(k, train=train)) as file_writer:
value = [i for i in range(samples_per_file)]
for d in p.imap_unordered(process, value):
w = d['image'].shape[1]
h = d['image'].shape[0]
sep_image = np.asarray(Image.fromarray(d['sep_image']).resize((w // 2, h // 2)))
textline_image = np.asarray(Image.fromarray(d['textline_image']).resize((w // 2, h // 2)))
image = tf.io.encode_png(d['image'][...,None]).numpy()
sep_image = tf.io.encode_png(sep_image[...,None]).numpy()
textline_image = tf.io.encode_png(textline_image[...,None]).numpy()
example_proto = tf.train.Example(features=tf.train.Features(feature={
'str': tf.train.Feature(bytes_list=tf.train.BytesList(value=[d['str'].encode('utf-8')])),
'width': tf.train.Feature(int64_list=tf.train.Int64List(value=[w])),
'height': tf.train.Feature(int64_list=tf.train.Int64List(value=[h])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])),
'sep_image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[sep_image])),
'textline_image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[textline_image])),
'position': tf.train.Feature(bytes_list=tf.train.BytesList(value=[d['position'].astype(np.float32).tobytes()])),
'code_list': tf.train.Feature(bytes_list=tf.train.BytesList(value=[d['code_list'].astype(np.int32).tobytes()])),
}))
record_bytes = example_proto.SerializeToString()
file_writer.write(record_bytes)
print(decode_ruby(d['str']))
print()
def init():
global rng
rng = np.random.default_rng()
def create_data(train=True, count=1):
k = count_prevfile(train=train)
if k < count:
with Pool(initializer=init) as p:
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
for i in range(k, count):
executor.submit(write_data, i, p, train)
if __name__=="__main__":
import sys
import multiprocessing
multiprocessing.set_start_method('spawn')
if len(sys.argv) < 3:
test_count = 2
train_count = 200
else:
test_count = int(sys.argv[1])
train_count = int(sys.argv[2])
create_data(train=False, count=test_count)
create_data(train=True, count=train_count)