-
Notifications
You must be signed in to change notification settings - Fork 16
/
Monte_Carlo_Averaging.py
78 lines (66 loc) · 3.12 KB
/
Monte_Carlo_Averaging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Qt5Agg')
import copy
def pl(result, num1, num2):
plt.figure(num1)
plt.plot(range(len(result['accuracy_test'])), result['accuracy_test'], label=r'Noiseless Channel')
plt.plot(range(len(result['accuracy_test1'])), result['accuracy_test1'], label=r'The Proposed Algorithm')
# plt.plot(range(len(result['accuracy_test3'])), result['accuracy_test3'],label=r'Wuthout RIS')
# plt.plot(range(len(result['accuracy_test2'])),result['accuracy_test2'],label=r'DC Programming')
# plt.plot(range(len(result['accuracy_test5'])), result['accuracy_test5'],label=r'Deffiential Geometry')
plt.ylabel('Test Accuracy')
plt.xlabel('Training Round')
plt.legend()
plt.figure(num2)
plt.plot(range(len(result['loss_train'])), result['loss_train'], label=r'Noiseless Channel')
plt.plot(range(len(result['loss_train1'])), result['loss_train1'], label=r'The Proposed Algorithm')
# plt.plot(range(len(result['loss_train3'])), result['loss_train3'],label=r'Wuthout RIS')
# plt.plot(range(len(result['loss_train2'])), result['loss_train2'],label=r'DC Programming')
# plt.plot(range(len(result['loss_train5'])), result['loss_train5'],label=r'Deffiential Geometry')
plt.ylabel('Training Loss')
plt.xlabel('Training Round')
plt.legend()
plt.ylim([0, 50])
len1 = len(result['accuracy_test'])
a = np.zeros([5, len1])
a[0, :] = result['accuracy_test']
a[1, :] = result['accuracy_test1']
# a[2,:]=result['accuracy_test3']
# a[3,:]=result['accuracy_test2']
# a[4,:]=result['accuracy_test5']
return a
if __name__ == '__main__':
# load the stored running result, average the Monte Carlo trials to compute the average loss/accuracy
# M_set=[10,20,30,40,50,60]
M_set = [40]
Noiseless = np.zeros([len(M_set), 5])
Proposed = np.zeros([len(M_set), 5])
trial = 5
SNR = 90.0
for m in range(len(M_set)):
mm = M_set[m]
filename = './store/result_trial_{}_M_{}_N_{}_L_{}_\
SNR_{}_Tau_{}_set_{}.npz'.format(trial,
40, 5, mm, SNR, 1, 2)
a = np.load(filename, allow_pickle=1)
result_set = a['arr_1']
result_CNN_set = a['arr_2']
result_CNN_MB_set = a['arr_3']
SCA_Gibbs = a['arr_4']
res_CNN = {} # batch gradient desent
res_CNN_MB = {} # mini-batch gradient desent
for i in range(trial):
if i == 0:
res_CNN = copy.deepcopy(result_CNN_set[0])
res_CNN_MB = copy.deepcopy(result_CNN_MB_set[0])
else:
for item in res_CNN.keys():
res_CNN[item] += copy.deepcopy(result_CNN_set[i][item])
for item in res_CNN.keys():
res_CNN_MB[item] += copy.deepcopy(result_CNN_MB_set[i][item])
for item in res_CNN.keys():
res_CNN[item] = copy.deepcopy(res_CNN[item] / trial)
res_CNN_MB[item] = copy.deepcopy(res_CNN_MB[item] / trial)