-
Notifications
You must be signed in to change notification settings - Fork 16
/
plot_seca.py
162 lines (124 loc) · 4.81 KB
/
plot_seca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
import numpy as np
import argparse
import matplotlib.pyplot as plt
import matplotlib
# matplotlib.use('Qt5Agg')
#from pylab import *
import copy
def pl(result,num1,num2):
# params = {
# 'axes.labelsize': 10,
## 'text.fontsize': 8,
# 'legend.fontsize': 12,
# 'xtick.labelsize': 12,
# 'ytick.labelsize': 12,
# 'text.usetex': True,
# 'figure.figsize': [6, 6]
# }
# rcParams.update(params)
plt.figure(num1)
plt.plot(range(len(result['accuracy_test'])), result['accuracy_test'],label=r'Noiseless Channel')
plt.plot(range(len(result['accuracy_test1'])),result['accuracy_test1'],label=r'The Proposed Algorithm')
plt.plot(range(len(result['accuracy_test3'])), result['accuracy_test3'],label=r'Wuthout RIS')
plt.plot(range(len(result['accuracy_test2'])),result['accuracy_test2'],label=r'DC Programming')
plt.plot(range(len(result['accuracy_test5'])), result['accuracy_test5'],label=r'Deffiential Geometry')
plt.ylabel('Test Accuracy')
plt.xlabel('Training Round')
plt.legend()
plt.figure(num2)
plt.plot(range(len(result['loss_train'])), result['loss_train'],label=r'Noiseless Channel')
plt.plot(range(len(result['loss_train1'])), result['loss_train1'],label=r'The Proposed Algorithm')
plt.plot(range(len(result['loss_train3'])), result['loss_train3'],label=r'Wuthout RIS')
plt.plot(range(len(result['loss_train2'])), result['loss_train2'],label=r'DC Programming')
plt.plot(range(len(result['loss_train5'])), result['loss_train5'],label=r'Deffiential Geometry')
plt.ylabel('Training Loss')
plt.xlabel('Training Round')
plt.legend()
plt.ylim([0, 50])
len1=len(result['accuracy_test'])
a=np.zeros([5,len1])
a[0,:]=result['accuracy_test']
a[1,:]=result['accuracy_test1']
a[2,:]=result['accuracy_test3']
a[3,:]=result['accuracy_test2']
a[4,:]=result['accuracy_test5']
return a
def plot_figure_mse(result,num1,num2):
len1=len(result['loss_test'])
return result['loss_test'][len1-1],result['loss_test1'][len1-1],\
result['loss_test3'][len1-1],result['loss_test2'][len1-1],result['loss_test5'][len1-1]
def plot_figure(result,num1,num2):
len1=len(result['accuracy_test'])
return result['accuracy_test'][len1-1],result['accuracy_test1'][len1-1],\
result['accuracy_test3'][len1-1],result['accuracy_test2'][len1-1],result['accuracy_test5'][len1-1],\
result['loss_train'][len1-2],result['loss_train1'][len1-2],\
result['loss_train3'][len1-2],result['loss_train2'][len1-2],result['loss_train5'][len1-2]
def find_conver(dic,threshold):
len1=len(dic['accuracy_test'])
ret=np.ones([5,])*len1*np.nan
for i in range(len1):
if dic['accuracy_test'][i]>threshold:
ret[0]=i
break
for i in range(len1):
if dic['accuracy_test1'][i]>threshold:
ret[1]=i
break
for i in range(len1):
if dic['accuracy_test3'][i]>threshold:
ret[2]=i
break
for i in range(len1):
if dic['accuracy_test2'][i]>threshold:
ret[3]=i
break
for i in range(len1):
if dic['accuracy_test5'][i]>threshold:
ret[4]=i
break
return ret
#/result['accuracy_test'][len1-1]
if __name__ == '__main__':
M_set=[10,20,30,40,50,60]
# M_set=[40]
Noiseless=np.zeros([len(M_set),5])
Proposed=np.zeros([len(M_set),5])
TWC=np.zeros([len(M_set),5])
DC=np.zeros([len(M_set),5])
DG=np.zeros([len(M_set),5])
BGD_acc=np.zeros([5,len(M_set)])
MBGD_acc=np.zeros([5,len(M_set)])
OBJ_acc=np.zeros([5,len(M_set)])
BGD_cov=np.zeros([5,len(M_set)])
MBGD_cov=np.zeros([5,len(M_set)])
#SNR{}/
thres=0.7
trial=50
SNR=90.0
testmode=2
for m in range(len(M_set)):
mm=M_set[m]
filename='./store/trial_{}_M_{}_N_{}_L_{}_\
SNR_{}_Tau_{}_set_{}.npz'.format(trial,
40,5,mm,SNR,1,1)
a=np.load(filename,allow_pickle=1)
result_CNN_set=a['arr_2']
res_CNN={}
res_CNN_MB={}
mn=0
for i in range(trial):
# print(i)
if i==0:
res_CNN=copy.deepcopy(result_CNN_set[0])
else:
for item in res_CNN.keys():
res_CNN[item]+=copy.deepcopy(result_CNN_set[i][item])
for item in res_CNN.keys():
res_CNN[item]=copy.deepcopy(res_CNN[item]/trial)
a,b,c,d,e,f,g,h,i,j=plot_figure(res_CNN,3,4)
BGD_acc[0,m]=a
BGD_acc[1,m]=b
BGD_acc[2,m]=c
BGD_acc[3,m]=d
BGD_acc[4,m]=e