This repository has been archived by the owner on Oct 9, 2020. It is now read-only.
forked from RuidongZ/Recurrent_Recommender_Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DataHelper.py
69 lines (49 loc) · 2.35 KB
/
DataHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- Encoding:UTF-8 -*-
import pandas as pd
class Data:
def __init__(self, name='ml-1m'):
self.dataName = name
self.dataPath = "./data/" + self.dataName + "/"
# Static Profile
self.UserInfo = self.getUserInfo()
self.MovieInfo = self.getMovieInfo()
self.data = self.getData()
def getUserInfo(self):
if self.dataName == "ml-1m":
userInfoPath = self.dataPath + "users.dat"
users_title = ['UserID', 'Gender', 'Age', 'JobID', 'Zip-code']
users = pd.read_table(userInfoPath, sep='::', header=None, names=users_title, engine='python')
users = users.filter(regex='UserID|Gender|Age|JobID')
users_orig = users.values
# 将性别映射到0,1
gender_map = {'F': 0, 'M': 1}
users['Gender'] = users['Gender'].map(gender_map)
# 将年龄组映射到0-6
age_map = {val: idx for idx, val in enumerate(set(users['Age']))}
users['Age'] = users['Age'].map(age_map)
return users
def getMovieInfo(self):
if self.dataName == "ml-1m":
movieInfoPath = self.dataPath + "movies.dat"
movies_title = ['MovieID', 'Title', 'Genres']
movies = pd.read_table(movieInfoPath, sep='::', header=None, names=movies_title, engine='python')
movies = movies.filter(regex='MovieID|Genres')
#电影类型映射到0-18
genres_set = set()
for val in movies['Genres'].str.split('|'):
genres_set.update(val)
genres2int = {val: idx for idx, val in enumerate(genres_set)}
genres_map = {val: [genres2int[row] for row in val.split('|')] for ii, val in enumerate(set(movies['Genres']))}
movies['Genres'] = movies['Genres'].map(genres_map)
return movies
def getData(self):
if self.dataName == "ml-1m":
dataPath = self.dataPath + "ratings.dat"
ratings_title = ['UserID', 'MovieID', 'Rating', 'TimeStamp']
ratings = pd.read_table(dataPath, sep='::', header=None, names=ratings_title, engine='python')
data = pd.merge(pd.merge(ratings, self.UserInfo), self.MovieInfo)
data = data.sort_values(by=['TimeStamp'])
return data
if __name__ == '__main__':
data = Data()
print(data.MovieInfo)