-
Notifications
You must be signed in to change notification settings - Fork 4
/
predict.py
330 lines (292 loc) · 14.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python3
import os
from text.torchtext.datasets.generic import Query
from text import torchtext
from argparse import ArgumentParser
import ujson as json
import torch
import numpy as np
import random
from pprint import pformat
from util import get_splits, set_seed, preprocess_examples
from metrics import compute_metrics
import models
def get_all_splits(args, new_vocab):
splits = []
for task in args.tasks:
print(f'Loading {task}')
kwargs = {}
if not 'train' in args.evaluate:
kwargs['train'] = None
if not 'valid' in args.evaluate:
kwargs['validation'] = None
if not 'test' in args.evaluate:
kwargs['test'] = None
s = get_splits(args, task, new_vocab, **kwargs)[0]
preprocess_examples(args, [task], [s], new_vocab, train=False)
splits.append(s)
return splits
def prepare_data(args, FIELD):
new_vocab = torchtext.data.ReversibleField(batch_first=True, init_token='<init>', eos_token='<eos>',
lower=args.lower, include_lengths=True)
splits = get_all_splits(args, new_vocab)
new_vocab.build_vocab(*splits)
print(f'Vocabulary has {len(FIELD.vocab)} tokens from training')
args.max_generative_vocab = min(len(FIELD.vocab), args.max_generative_vocab)
FIELD.append_vocab(new_vocab)
print(f'Vocabulary has expanded to {len(FIELD.vocab)} tokens')
char_vectors = torchtext.vocab.CharNGram(cache=args.embeddings)
glove_vectors = torchtext.vocab.GloVe(cache=args.embeddings)
vectors = [char_vectors, glove_vectors]
# vectors = glove_vectors
FIELD.vocab.load_vectors(vectors, True)
FIELD.decoder_to_vocab = {idx: FIELD.vocab.stoi[word] for idx, word in enumerate(FIELD.decoder_itos)}
FIELD.vocab_to_decoder = {idx: FIELD.decoder_stoi[word] for idx, word in enumerate(FIELD.vocab.itos) if
word in FIELD.decoder_stoi}
splits = get_all_splits(args, FIELD)
return FIELD, splits
def to_iter(data, bs, device):
Iterator = torchtext.data.Iterator
it = Iterator(data, batch_size=bs,
device=device, batch_size_fn=None,
train=False, repeat=False, sort=None,
shuffle=None, reverse=False)
return it
def run(args, field, val_sets, model):
device = set_seed(args)
print(f'Preparing iterators')
if len(args.val_batch_size) == 1 and len(val_sets) > 1:
args.val_batch_size *= len(val_sets)
iters = [(name, to_iter(x, bs, device)) for name, x, bs in zip(args.tasks, val_sets, args.val_batch_size)]
def mult(ps):
r = 0
for p in ps:
this_r = 1
for s in p.size():
this_r *= s
r += this_r
return r
params = list(filter(lambda p: p.requires_grad, model.parameters()))
num_param = mult(params)
print(f'{args.model} has {num_param:,} parameters')
model.to(device)
decaScore = []
model.eval()
with torch.no_grad():
for task, it in iters:
print(task)
prediction_file_name = os.path.join(os.path.splitext(args.best_checkpoint)[0], args.evaluate, task + '.txt')
answer_file_name = os.path.join(os.path.splitext(args.best_checkpoint)[0], args.evaluate,
task + '.gold.txt')
results_file_name = answer_file_name.replace('gold', 'results')
if 'sql' in task or 'squad' in task:
ids_file_name = answer_file_name.replace('gold', 'ids')
if os.path.exists(prediction_file_name):
print('** ', prediction_file_name, ' already exists -- this is where predictions are stored **')
if args.overwrite:
print('**** overwriting ', prediction_file_name, ' ****')
if os.path.exists(answer_file_name):
print('** ', answer_file_name, ' already exists -- this is where ground truth answers are stored **')
if args.overwrite:
print('**** overwriting ', answer_file_name, ' ****')
if os.path.exists(results_file_name):
print('** ', results_file_name, ' already exists -- this is where metrics are stored **')
if args.overwrite:
print('**** overwriting ', results_file_name, ' ****')
else:
with open(results_file_name) as results_file:
if not args.silent:
for l in results_file:
print(l)
metrics = json.loads(results_file.readlines()[0])
decaScore.append(metrics[args.task_to_metric[task]])
continue
for x in [prediction_file_name, answer_file_name, results_file_name]:
os.makedirs(os.path.dirname(x), exist_ok=True)
if not os.path.exists(prediction_file_name) or args.overwrite:
with open(prediction_file_name, 'w') as prediction_file:
predictions = []
ids = []
for batch_idx, batch in enumerate(it):
_, p = model(batch)
p = field.reverse(p)
for i, pp in enumerate(p):
if 'sql' in task:
ids.append(int(batch.wikisql_id[i]))
if 'squad' in task:
ids.append(it.dataset.q_ids[int(batch.squad_id[i])])
prediction_file.write(pp + '\n')
predictions.append(pp)
if 'sql' in task:
with open(ids_file_name, 'w') as id_file:
for i in ids:
id_file.write(json.dumps(i) + '\n')
if 'squad' in task:
with open(ids_file_name, 'w') as id_file:
for i in ids:
id_file.write(i + '\n')
else:
with open(prediction_file_name) as prediction_file:
predictions = [x.strip() for x in prediction_file.readlines()]
if 'sql' in task or 'squad' in task:
with open(ids_file_name) as id_file:
ids = [int(x.strip()) for x in id_file.readlines()]
def from_all_answers(an):
return [it.dataset.all_answers[sid] for sid in an.tolist()]
if not os.path.exists(answer_file_name) or args.overwrite:
with open(answer_file_name, 'w') as answer_file:
answers = []
for batch_idx, batch in enumerate(it):
if hasattr(batch, 'wikisql_id'):
a = from_all_answers(batch.wikisql_id.data.cpu())
elif hasattr(batch, 'squad_id'):
a = from_all_answers(batch.squad_id.data.cpu())
elif hasattr(batch, 'woz_id'):
a = from_all_answers(batch.woz_id.data.cpu())
else:
a = field.reverse(batch.answer.data)
for aa in a:
answers.append(aa)
answer_file.write(json.dumps(aa) + '\n')
else:
with open(answer_file_name) as answer_file:
answers = [json.loads(x.strip()) for x in answer_file.readlines()]
if len(answers) > 0:
if not os.path.exists(results_file_name) or args.overwrite:
metrics, answers = compute_metrics(predictions, answers,
bleu='iwslt' in task or 'multi30k' in task or args.bleu,
dialogue='woz' in task,
rouge='cnn' in task or 'dailymail' in task or args.rouge,
logical_form='sql' in task, corpus_f1='zre' in task, args=args)
with open(results_file_name, 'w') as results_file:
results_file.write(json.dumps(metrics) + '\n')
else:
with open(results_file_name) as results_file:
metrics = json.loads(results_file.readlines()[0])
if not args.silent:
for i, (p, a) in enumerate(zip(predictions, answers)):
print(f'Prediction {i + 1}: {p}\nAnswer {i + 1}: {a}\n')
print(metrics)
decaScore.append(metrics[args.task_to_metric[task]])
print(f'Evaluated Tasks:\n')
for i, (task, _) in enumerate(iters):
print(f'{task}: {decaScore[i]}')
print(f'-------------------')
print(f'DecaScore: {sum(decaScore)}\n')
print(f'\nSummary: | {sum(decaScore)} | {" | ".join([str(x) for x in decaScore])} |\n')
def get_args():
parser = ArgumentParser()
parser.add_argument('--path', required=True)
parser.add_argument('--evaluate', type=str, required=True)
parser.add_argument('--tasks',
default=['squad', 'iwslt.en.de', 'cnn_dailymail', 'multinli.in.out', 'sst', 'srl', 'zre',
'woz.en', 'wikisql', 'schema'], nargs='+')
parser.add_argument('--devices', default=[0], nargs='+', type=int,
help='a list of devices that can be used (multi-gpu currently WIP)')
parser.add_argument('--seed', default=123, type=int, help='Random seed.')
parser.add_argument('--beam_size', default=1, type=int, help='beam size for beam search.')
parser.add_argument('--data', default='./.data/my_custom_dataset', type=str, help='where to load data from.')
parser.add_argument('--embeddings', default='/home/user2/disk/embedding', type=str,
help='where to save embeddings.')
parser.add_argument('--checkpoint_name')
parser.add_argument('--bleu', action='store_true', help='whether to use the bleu metric (always on for iwslt)')
parser.add_argument('--rouge', action='store_true',
help='whether to use the bleu metric (always on for cnn, dailymail, and cnn_dailymail)')
parser.add_argument('--overwrite', action='store_true', help='whether to overwrite previously written predictions')
parser.add_argument('--silent', action='store_true', help='whether to print predictions to stdout')
args = parser.parse_args()
with open(os.path.join(args.path, 'config.json')) as config_file:
config = json.load(config_file)
retrieve = ['model',
'transformer_layers', 'rnn_layers', 'transformer_hidden',
'dimension', 'load', 'max_val_context_length', 'val_batch_size',
'transformer_heads', 'max_output_length', 'max_generative_vocab',
'lower', 'cove', 'intermediate_cove', 'elmo', 'glove_and_char']
for r in retrieve:
if r in config:
setattr(args, r, config[r])
elif 'cove' in r:
setattr(args, r, False)
elif 'elmo' in r:
setattr(args, r, [-1])
elif 'glove_and_char' in r:
setattr(args, r, True)
else:
setattr(args, r, None)
args.dropout_ratio = 0.0
args.task_to_metric = {'cnn_dailymail': 'avg_rouge',
'iwslt.en.de': 'bleu',
'multinli.in.out': 'em',
'squad': 'nf1',
'srl': 'nf1',
'sst': 'em',
'wikisql': 'lfem',
'woz.en': 'joint_goal_em',
'zre': 'corpus_f1',
'schema': 'em',
'AAPD': 'micro-f1',
'AAPDOri': 'micro-f1',
'reuters': 'nf1',
'IMDB': 'em',
'RCV1-V2': 'nf1',
'ontonotes.ner': 'nf1',
'20news': 'nEM'}
if not args.checkpoint_name is None:
args.best_checkpoint = os.path.join(args.path, args.checkpoint_name)
else:
assert os.path.exists(os.path.join(args.path, 'process_0.log'))
args.best_checkpoint = get_best(args)
return args
def get_best(args):
with open(os.path.join(args.path, 'config.json')) as f:
save_every = json.load(f)['save_every']
with open(os.path.join(args.path, 'process_0.log')) as f:
lines = f.readlines()
best_score = 0
best_it = 0
deca_scores = {}
for l in lines:
if 'val' in l:
try:
task = l.split('val_')[1].split(':')[0]
except Exception as e:
print(e)
continue
it = int(l.split('iteration_')[1].split(':')[0])
metric = args.task_to_metric[task]
score = float(l.split(metric + '_')[1].split(':')[0])
if it in deca_scores:
deca_scores[it]['deca'] += score
deca_scores[it][metric] = score
else:
deca_scores[it] = {'deca': score, metric: score}
if deca_scores[it]['deca'] > best_score:
best_score = deca_scores[it]['deca']
best_it = it
print(best_it)
print(best_score)
return os.path.join(args.path, f'iteration_{int(best_it)}.pth')
if __name__ == '__main__':
args = get_args()
print(f'Arguments:\n{pformat(vars(args))}')
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
print(f'Loading from {args.best_checkpoint}')
save_dict = torch.load(args.best_checkpoint)
field = save_dict['field']
print(f'Initializing Model')
Model = getattr(models, args.model)
model = Model(field, args)
model_dict = save_dict['model_state_dict']
backwards_compatible_cove_dict = {}
for k, v in model_dict.items():
if 'cove.rnn.' in k:
k = k.replace('cove.rnn.', 'cove.rnn1.')
backwards_compatible_cove_dict[k] = v
model_dict = backwards_compatible_cove_dict
model.load_state_dict(model_dict)
field, splits = prepare_data(args, field)
model.set_embeddings(field.vocab.vectors)
run(args, field, splits, model)