-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
230 lines (187 loc) · 8.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import os
import numpy as np
from scipy import stats
import yaml
from argparse import ArgumentParser
import random
from torch.optim import Adam
import torch.nn.functional as F
import torch.nn as nn
from network import TwoStreamIQA
from IQADataset import IQADataset
def get_indexNum(config, index, status):
test_ratio = config['test_ratio']
train_ratio = config['train_ratio']
trainindex = index[:int(train_ratio * len(index))]
testindex = index[int((1 - test_ratio) * len(index)):]
train_index, val_index, test_index = [], [], []
ref_ids = []
for line0 in open("./data/ref_ids.txt", "r"):
line0 = float(line0[:-1])
ref_ids.append(line0)
ref_ids = np.array(ref_ids)
for i in range(len(ref_ids)):
train_index.append(i) if (ref_ids[i] in trainindex) else \
test_index.append(i) if (ref_ids[i] in testindex) else \
val_index.append(i)
if status == 'train':
index = train_index
if status == 'test':
index = test_index
if status == 'val':
index = val_index
return len(index)
if __name__ == '__main__':
parser = ArgumentParser("Train Two-Stream-IQA")
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--epochs", type=int, default=200)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--dataset", type=str, default="LIVE")
parser.add_argument("--weight_decay", type=float, default=0.0)
args = parser.parse_args()
save_model = "./savemodel/TwoStreamIQA.pth"
seed = random.randint(10000000, 99999999)
torch.manual_seed(seed)
np.random.seed(seed)
print("seed:", seed)
with open("config.yaml") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
index = []
if args.dataset == "LIVE":
print("dataset: LIVE")
index = list(range(1, 30))
random.shuffle(index)
elif args.dataset == "TID2013":
print("dataset: TID2013")
index = list(range(1, 26))
print('rando index', index)
dataset = args.dataset
valnum = get_indexNum(config, index, "val")
testnum = get_indexNum(config, index, "test")
train_dataset = IQADataset(dataset, config, index, "train")
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
pin_memory=True,
num_workers=0)
val_dataset = IQADataset(dataset, config, index, "val")
val_loader = torch.utils.data.DataLoader(val_dataset)
test_dataset = IQADataset(dataset, config, index, "test")
test_loader = torch.utils.data.DataLoader(test_dataset)
model = TwoStreamIQA().to(device)
criterion = nn.L1Loss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
best_SROCC = -1
for epoch in range(args.epochs):
#train
model.train()
LOSS = 0
for i, (patches, label) in enumerate(train_loader):
patches_rgb = patches[0].to(device)
patches_gra = patches[1].to(device)
label = label.to(device)
optimizer.zero_grad()
outputs = model((patches_rgb, patches_gra))
loss = criterion(outputs, label)
loss.backward()
optimizer.step()
LOSS = LOSS + loss.item()
train_loss = LOSS / (i + 1)
#val
y_pred = np.zeros(valnum)
y_val = np.zeros(valnum)
model.eval()
L = 0
with torch.no_grad():
for i, (patches, label) in enumerate(val_loader):
y_val[i] = label.item()
patches_rgb = patches[0].to(device)
patches_gra = patches[1].to(device)
label = label.to(device)
outputs = model((patches_rgb, patches_gra))
score = outputs.mean()
y_pred[i] = score
loss = criterion(score, label[0])
L = L + loss.item()
val_loss = L / (i+1)
val_SROCC = stats.spearmanr(y_pred, y_val)[0]
val_PLCC = stats.pearsonr(y_pred, y_val)[0]
val_KROCC = stats.stats.kendalltau(y_pred, y_val)[0]
val_RMSE = np.sqrt(((y_pred-y_val)**2).mean())
#test
y_pred = np.zeros(testnum)
y_test = np.zeros(testnum)
L = 0
with torch.no_grad():
for i, (patches, label) in enumerate(test_loader):
y_test[i] = label.item()
patches_rgb = patches[0].to(device)
patches_gra = patches[1].to(device)
label = label.to(device)
outputs = model((patches_rgb, patches_gra))
score = outputs.mean()
y_pred[i] = score
loss = criterion(score, label[0])
L = L + loss.item()
test_loss = L / (i+1)
SROCC = stats.spearmanr(y_pred, y_test)[0]
PLCC = stats.pearsonr(y_pred, y_test)[0]
KROCC = stats.stats.kendalltau(y_pred, y_test)[0]
RMSE = np.sqrt(((y_pred - y_test) ** 2).mean())
print("Epoch {} Valid Results: loss={:.3f} SROCC={:.3f} PLCC={:.3f} KROCC={:.3f} RMSE={:.3f}".format(epoch,
val_loss,
val_SROCC,
val_PLCC,
val_KROCC,
val_RMSE))
print("Epoch {} Test Results: loss={:.3f} SROCC={:.3f} PLCC={:.3f} KROCC={:.3f} RMSE={:.3f}".format(epoch,
test_loss,
SROCC,
PLCC,
KROCC,
RMSE))
if val_SROCC > best_SROCC and epoch > 100:
print("Update Epoch {} best valid SROCC".format(epoch))
print("Valid Results: loss={:.3f} SROCC={:.3f} PLCC={:.3f} KROCC={:.3f} RMSE={:.3f}".format(val_loss,
val_SROCC,
val_PLCC,
val_KROCC,
val_RMSE))
print("Test Results: loss={:.3f} SROCC={:.3f} PLCC={:.3f} KROCC={:.3f} RMSE={:.3f}".format(test_loss,
SROCC,
PLCC,
KROCC,
RMSE))
torch.save(model.state_dict(), save_model)
best_SROCC = val_SROCC
#final test
model.load_state_dict(torch.load(save_model))
model.eval()
with torch.no_grad():
y_pred = np.zeros(testnum)
y_test = np.zeros(testnum)
L = 0
for i, (patches, label) in enumerate(test_loader):
y_test[i] = label.item()
patches_rgb = patches[0].to(device)
patches_gra = patches[1].to(device)
label = label.to(device)
outputs = model((patches_rgb, patches_gra))
score = outputs.mean()
y_pred[i] = score
loss = criterion(score, label[0])
L = L + loss.item()
test_loss = L / (i + 1)
SROCC = stats.spearmanr(y_pred, y_test)[0]
PLCC = stats.pearsonr(y_pred, y_test)[0]
KROCC = stats.stats.kendalltau(y_pred, y_test)[0]
RMSE = np.sqrt(((y_pred - y_test) ** 2).mean())
print("Final test Results: loss={:.3f} SROCC={:.3f} PLCC={:.3f} KROCC={:.3f} RMSE={:.3f}".format(test_loss,
SROCC,
PLCC,
KROCC,
RMSE))