Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Polymer with -reg2mem -pluto-opt generates IR with out-of-bounds accesses for imperfectly nested loops #411

Open
andidr opened this issue May 28, 2024 · 0 comments
Assignees

Comments

@andidr
Copy link
Contributor

andidr commented May 28, 2024

It seems that for imperfect loop nests, polymer-opt can end up generating IR that invokes functions representing statements with parameters that may cause out-of-bounds memory accesses. For example, when invoking polymer-opt -reg2mem -extract-scop-stmt -pluto-opt kernel.cgeist.mlir -o kernel.polymer.mlir --allow-unregistered-dialect on the following IR saved as kernel.mlir:

func.func @kernel(%arg0: memref<153xi64>, %arg1: memref<153x3x7xi64>, %arg2: memref<7xi64>) {
     affine.for %arg3 = 0 to 153 {
       %0 = affine.load %arg0[%arg3] : memref<153xi64>
       affine.for %arg4 = 0 to 3 {
         affine.for %arg5 = 0 to 7 {
           %1 = affine.load %arg1[%arg3, %arg4, %arg5] : memref<153x3x7xi64>
           %2 = arith.muli %1, %0 : i64
           %3 = affine.load %arg2[%arg5] : memref<7xi64>
           %4 = arith.subi %3, %2 : i64
           affine.store %4, %arg2[%arg5] : memref<7xi64>
         }
       }
     }
     return
}

polymer-opt generates:

map = affine_map<(d0) -> (d0 * 2)>                                                                                                                                                           
#map1 = affine_map<(d0) -> (10, d0 * 2 + 3)>                                                                                                                                                  
#map2 = affine_map<(d0, d1) -> (d0 * 6, d1 * 3 - 1)>                                                                                                                                          
#map3 = affine_map<(d0, d1) -> (29, d0 * 6 + 7, d1 * 3 + 4)>                                                                                                                                  
#map4 = affine_map<(d0, d1) -> (d0 * 2 + d1 * 10)>                                                                                                                                            
#map5 = affine_map<(d0, d1) -> (d0 * 32 + 32, d0 * 2 + d1 * 10 + 3)>                                                                                                                          
#map6 = affine_map<(d0) -> (d0 * 32)>                                                                                                                                                         
#map7 = affine_map<(d0, d1) -> (d0 * 6 + d1 * 30 + 7)>                                                                                                                                        
#map8 = affine_map<(d0, d1, d2) -> (d0 * -6 - d1 * 30 + d2)>                                                                                                                                  
#map9 = affine_map<(d0, d1) -> (d0 + d1 * 5)>                                                                                                                                                 
#map10 = affine_map<(d0, d1, d2) -> (d0 * -2 - d1 * 10 + d2)>                                                                                                                                 
#map11 = affine_map<(d0, d1) -> (d0 * 32, d1 * 96 - 6)>                                                                                                                                       
#map12 = affine_map<(d0, d1) -> (d0 * 96 + 1, d1 * 32 + 32)>                                                                                                                                  
#map13 = affine_map<(d0, d1) -> (d0 * -96 + d1 + 6)>                                                                                                                                          
#map14 = affine_map<(d0) -> (d0 * 16 - 1)>                                                                                                                                                    
#map15 = affine_map<(d0, d1) -> ((d0 * 16) ceildiv 3, d1 * 16)>                                                                                                                               
#map16 = affine_map<(d0, d1, d2) -> (153, (d0 * 16) floordiv 3 + 6, d1 * 32 + 32, d2 * 16 + 16)>                                                                                              
#map17 = affine_map<(d0, d1) -> (d0 * 32 + 32, d1 * 2 + 3)>                                                                                                                                   
#map18 = affine_map<(d0) -> (d0 * 6)>                                                                                                                                                         
#map19 = affine_map<(d0, d1) -> (d0 * 32 + 32, d1 * 6 + 7)>                                                                                                                                   
#map20 = affine_map<(d0, d1) -> (d0 * -6 + d1)>                                                                                                                                               
#map21 = affine_map<(d0, d1) -> (d0 * -2 + d1)>                                                                                                                                               
#set = affine_set<(d0, d1) : ((d1 - 1) floordiv 3 - d0 >= 0)>                                                                                                                                 
#set1 = affine_set<(d0, d1, d2) : ((d1 - 1) floordiv 2 - d0 >= 0, d1 - d2 ceildiv 3 >= 0)>                                                                                                    
module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi32>>, #dlti.dl_entry<i8, dense<8> : vector<2xi32>>, #dlti.dl_entry<i1, dense<8> : vector<2xi32
>>, #dlti.dl_entry<i64, dense<64> : vector<2xi32>>, #dlti.dl_entry<f80, dense<128> : vector<2xi32>>, #dlti.dl_entry<f64, dense<64> : vector<2xi32>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> 
: vector<4xi32>>, #dlti.dl_entry<f128, dense<128> : vector<2xi32>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi32>>, #dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi32>>, #dlt
i.dl_entry<i32, dense<32> : vector<2xi32>>, #dlti.dl_entry<i16, dense<16> : vector<2xi32>>, #dlti.dl_entry<f16, dense<16> : vector<2xi32>>, #dlti.dl_entry<"dlti.stack_alignment", 128 : i32>,
 #dlti.dl_entry<"dlti.endianness", "little">>, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128", llvm.target_triple = "x86_64-unknown-linux-gnu", "
polygeist.target-cpu" = "x86-64", "polygeist.target-features" = "+cmov,+cx8,+fxsr,+mmx,+sse,+sse2,+x87", "polygeist.tune-cpu" = "generic"} {                                                  
  func.func private @S0(%arg0: memref<1xi64>, %arg1: memref<153xi64>, %arg2: index) attributes {scop.stmt} {                                                                                  
    %0 = affine.load %arg1[symbol(%arg2)] : memref<153xi64>                                                                                                                                   
    affine.store %0, %arg0[0] : memref<1xi64>                                                                                                                                                 
    return                                                                                                                                                                                    
  }                                                                                                                                                                                           
  func.func private @S1(%arg0: memref<7xi64>, %arg1: index, %arg2: memref<1xi64>, %arg3: memref<153x3x7xi64>, %arg4: index, %arg5: index) attributes {scop.stmt} {                            
    %0 = affine.load %arg0[symbol(%arg1)] : memref<7xi64>
    %1 = affine.load %arg3[symbol(%arg4), symbol(%arg5), symbol(%arg1)] : memref<153x3x7xi64>
    %2 = affine.load %arg2[0] : memref<1xi64>
    %3 = arith.muli %1, %2 : i64
    %4 = arith.subi %0, %3 : i64
    affine.store %4, %arg0[symbol(%arg1)] : memref<7xi64>
    return
  }
  func.func @kernel(%arg0: memref<153xi64>, %arg1: memref<153x3x7xi64>, %arg2: memref<7xi64>) attributes {llvm.linkage = #llvm.linkage<external>} {
    %c2 = arith.constant 2 : index
    %alloca = memref.alloca() {scop.scratchpad} : memref<1xi64>
    affine.for %arg3 = 0 to 5 {
      affine.for %arg4 = #map(%arg3) to min #map1(%arg3) {
        affine.for %arg5 = max #map2(%arg3, %arg4) to min #map3(%arg3, %arg4) {
          affine.if #set(%arg4, %arg5) {
            affine.for %arg6 = #map4(%arg4, %arg5) to min #map5(%arg4, %arg5) {
              affine.for %arg7 = #map6(%arg5) to #map7(%arg4, %arg5) {
                %0 = affine.apply #map8(%arg4, %arg5, %arg7)
                %1 = affine.apply #map9(%arg4, %arg5)
                %2 = affine.apply #map10(%arg4, %arg6, %arg5)
                func.call @S1(%arg2, %0, %alloca, %arg1, %1, %2) : (memref<7xi64>, index, memref<1xi64>, memref<153x3x7xi64>, index, index) -> ()
              }
            }
          }
          affine.if #set1(%arg3, %arg4, %arg5) {
            affine.for %arg6 = max #map11(%arg5, %arg4) to min #map12(%arg4, %arg5) {
              %0 = affine.apply #map13(%arg4, %arg6)
              %1 = affine.apply #map14(%arg4)
              func.call @S1(%arg2, %0, %alloca, %arg1, %1, %c2) : (memref<7xi64>, index, memref<1xi64>, memref<153x3x7xi64>, index, index) -> ()
            }
          }
          affine.for %arg6 = max #map15(%arg5, %arg4) to min #map16(%arg5, %arg3, %arg4) {
            func.call @S0(%alloca, %arg0, %arg6) : (memref<1xi64>, memref<153xi64>, index) -> ()
            affine.for %arg7 = #map(%arg6) to min #map17(%arg4, %arg6) {
              affine.for %arg8 = #map18(%arg6) to min #map19(%arg5, %arg6) {
                %0 = affine.apply #map20(%arg6, %arg8)
                %1 = affine.apply #map21(%arg7, %arg6)
                func.call @S1(%arg2, %0, %alloca, %arg1, %arg6, %1) : (memref<7xi64>, index, memref<1xi64>, memref<153x3x7xi64>, index, index) -> ()
              }
            }
          }
        }
      }
    }
    return
  }
}

The 448th invocation of S1 by this IR is with %arg1 = 2, %arg4 = 21, and %arg5 = 418, which causes %arg3 to be indexed with a negative value, ultimately resulting in a segmentation fault.

This behavior can be reproduced with the code from this repository with a minimal non-working example:

$ git clone https://github.com/andidr/Polygeist-mnwe
$ cd Polygeist-mnwe
$ make mnwe.polymer
cgeist kernel.c --function=kernel -S -I. --memref-fullrank --raise-scf-to-affine -o kernel.cgeist.mlir
polymer-opt kernel.cgeist.mlir -reg2mem -extract-scop-stmt -pluto-opt -o kernel.polymer.mlir --allow-unregistered-dialect >/dev/null 2>&1
mlir-opt \
        -lower-affine \
        -convert-scf-to-cf \
        -cse \
        -canonicalize \
        -convert-func-to-llvm="use-bare-ptr-memref-call-conv" \
        --finalize-memref-to-llvm \
        -canonicalize \
        -o kernel.polymer.low.mlir kernel.polymer.mlir
mlir-translate -mlir-to-llvmir -o kernel.polymer.ll kernel.polymer.low.mlir
llc -opaque-pointers -o kernel.polymer.S kernel.polymer.ll
as -o kernel.polymer.o kernel.polymer.S
gcc -O3 -I. main.c kernel.polymer.o -o mnwe.polymer
$ ./mnwe.polymer 
Segmentation fault

Compiling the kernel with plain cgeist and without any polymer optimizations yields the expected results:

$ make mnwe.cgeist 
cgeist -c kernel.c --function=kernel -I. --memref-fullrank -o kernel.cgeist.o -O3
gcc -O3 -I. -o mnwe.cgeist main.c kernel.cgeist.o
$ ./mnwe.cgeist 
res: 8

which are the same as the results produced by a binary compiled using a plain C compiler:

$ make mnwe.O3
gcc -O3 -I. -c kernel.c -o kernel.O3.o
gcc -O3 -I. main.c kernel.O3.o -o mnwe.O3
$  ./mnwe.O3 
res: 8

I experienced similar issues with imperfect loop nests directly with pluto in the past and this may be related. Could somebody confirm that this is indeed a bug in pluto? Any suggestions for fixes or workarounds are welcome, too.

Thanks!

@ivanradanov ivanradanov self-assigned this Jun 13, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants