Skip to content

Latest commit

 

History

History
26 lines (18 loc) · 1.38 KB

README.md

File metadata and controls

26 lines (18 loc) · 1.38 KB

CS224W

How to run code

  • Download Uber Movement data and put in this folder:
    • San Francisco:
      • movement-speeds-quarterly-by-hod-san-francisco-2019-Q2.csv.zip
    • New York:
      • movement-speeds-quarterly-by-hod-new-york-2019-Q2.csv.zip
    • Seattle:
      • movement-speeds-quarterly-by-hod-seattle-2019-Q2.csv.zip
  • Install necessary packages with conda env create -f environment.yml
  • Run download_osm.py to download OSM maps for San Francisco, New York, Seattle.

Possible Next Steps

  1. Get Google Cloud set up.

  2. Get OpenStreetMap nodes/ways as a networkx graph using osmnx (or some other library).

  1. Use Uber Movement data to add traffic information to the graph. We have the OpenStreetMap mapping so it should not be hard.

  2. Convert graph from networkx to pytorch_geometric using torch_geometric.utils.from_networkx

  3. Run GCN, GraphSAGE or whatever using pytorch geometric.