-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwcs.py
executable file
·144 lines (105 loc) · 3.54 KB
/
twcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Load the WCS information from a fits header, and use it
# to convert pixel coordinates to world coordinates.
from __future__ import division # confidence high
import numpy as np
from astropy import wcs as pywcs
from astropy.io import fits
import re
import os
class WCS:
"""
Class to implement the transformation algorithm to convert pixel coordinate into WCS coordinates
this reflects what is provided in the wcslib module
"""
def __init__(self, header):
"""
Constructor: fetch all WCS information to setup parameters needed for the
conversion algorithm
:param header: this is the FITS header
:return: Nonz
"""
CRPIX1 = header['CRPIX1']
CRPIX2 = header['CRPIX2']
CD1_1 = header['CD1_1']
CD1_2 = header['CD1_2']
CRVAL1 = header['CRVAL1']
CD2_1 = header['CD2_1']
CD2_2 = header['CD2_2']
CRVAL2 = header['CRVAL2']
# prepare the transfromation matrix
self.xy0 = np.array([CRPIX1, CRPIX2], np.float64)
a = CD1_1
b = CD1_2
c = CRVAL1
d = CD2_1
e = CD2_2
f = CRVAL2
self.matrix = np.array([[a, b], [d, e]], np.float64)
self.ra_dec0 = np.array([c, f], np.float64)
def xy_to_radec(self, xy):
"""
Function to convert a pixel coordinates into a WCS coordonates
:param xy: a 1D ndarray
:return: ra_dec the result of the conversion as a 1d-array
"""
xy -= self.xy0
ra_dec = self.matrix.dot(xy)
dec = self.ra_dec0[1] + ra_dec[1]
dec_radians = 2.0 * np.pi * dec/360.0
scale = np.array([np.cos(dec_radians), 1.0])
ra_dec /= scale
ra_dec += self.ra_dec0
return ra_dec
def radec_to_xy(self, ra_dec):
# not yet done
return None
def read_hdus(fitsfile):
""" pixels from FITS file
cf http://stsdas.stsci.edu/stsci_python_epydoc/pyfits/api_hdulists.html
Return a HDUList()
"""
data_fits = None
try:
with fits.open(fitsfile) as data_fits:
try:
data_fits.verify('silentfix')
return data_fits
except ValueError as err:
print 'Error: %s' % err
except EnvironmentError as err:
print 'Cannot open the data fits file. - %s' % err
return data_fits
# Load the FITS hdulist using pyfits
if os.name == 'nt':
file_path = 'data/'
else:
file_path = '/sps/lsst/data/CFHT/D3/input/raw/'
file_name = file_path + '03BL01/D3/2004-01-13/r/732190p.fits.fz'
hdus = read_hdus(file_name)
# Parse the WCS keywords in the primary HDU
for n in range(1, 36):
print '--------------------------------'
header = hdus[n].header
wcs = pywcs.WCS(header)
mywcs = WCS(header)
# Some pixel coordinates of interest.
detsize = header['DATASEC']
m = re.match('[^\[]*\[([0-9]+):([0-9]+),([0-9]+):([0-9]+).*', detsize)
low1 = np.float64(m.group(1))
high1 = np.float64(m.group(2))
low2 = np.float64(m.group(3))
high2 = np.float64(m.group(4))
low = [low1, low2]
high = [high1, high2]
pixel = np.array([low, high], np.float64)
sky = wcs.wcs_pix2world(pixel, 0)
ra_dec_low = mywcs.xy_to_radec(low)
ra_dec_high = mywcs.xy_to_radec(high)
# print 'low=', low, 'high=', high
print 'mat=', ra_dec_low, ra_dec_high
print 'wcs=', sky[0], sky[1]
d_low = (sky[0] - ra_dec_low)/sky[0]
d_high = (sky[1] - ra_dec_high)/sky[1]
print 'd =', d_low, d_high