-
Notifications
You must be signed in to change notification settings - Fork 0
/
A070523.py
56 lines (50 loc) · 2.09 KB
/
A070523.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#! /usr/bin/env python3
from labmath import * # Available via pip (https://pypi.org/project/labmath/)
def isprimepower(n):
"""
If n is of the form p**e for some prime number p and positive integer e,
then we return (p,e). Otherwise, we return None.
Input: An integer.
Output: None or a 2-tuple of integers.
Examples:
>>> [isprimepower(n) for n in range(6, 11)
[None, (7, 1), (2, 3), (3, 2), None]
"""
if n <= 1 or not isinstance(n, inttypes): return None
x = ispower(n)
if x is None: return (n,1) if isprime(n) else None
assert isinstance(x, tuple)
assert len(x) == 2
ipp = isprimepower(x[0])
return None if ipp is None else (ipp[0], x[1]*ipp[1])
def cyclotomiceval(n, x, nfac=None): # Returns the value of the nth cyclotomic polynomial evaluated at x.
if n == 1: return x - 1
if n == 2: return x + 1
if x == 0: return 1
if nfac is None:
if x in (1, -1):
if x == -1 and n % 2 == 1: return 1
r = isprimepower(n if x == 1 else n//2)
return 1 if r is None else r[0]
nfac = factorint(n)
else:
if x == 1: return list(nfac)[0] if len(nfac) == 1 else 1
if x == -1: return 2 if (len(nfac) == 1 and 2 in nfac) else (max(nfac) if len(nfac) == 2 and nfac.get(2,0) == 1 else 1)
num, den = 1, 1
for dfac in divisors_factored(nfac):
d = iterprod(p**e for (p,e) in dfac.items())
ndfac = {p:(e-dfac.get(p, 0)) for (p,e) in nfac.items() if e != dfac.get(p, 0)}
nd = iterprod(p**e for (p,e) in ndfac.items())
# Now d divides n and nd == n / d.
m = mobius(ndfac)
if m == 1: num *= x**d - 1
elif m == -1: den *= x**d - 1
return num // den
basis = list(primegen(10**6))
for n in count(1):
print('\b'*80, "Testing", n, end='', flush=True)
x = cyclotomiceval(n, mpz(nthprime(n)))
if isprime(x, tb=basis): print('\b'*80, n, " ")
# 3, 6, 7, 14, 19, 31, 34, 66, 93, 307, 402, 421, 600, 848, 1022, 1057, 1906, 3772, 4184, 4364
# All terms <= 1906 have been proven with Pari's ECPP.
# No other terms <= 20000.