-
Notifications
You must be signed in to change notification settings - Fork 672
/
examples.py
66 lines (49 loc) · 1.55 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
from palm_rlhf_pytorch import PaLM, RewardModel, RLHFTrainer
from accelerate import Accelerator
accelerator = Accelerator()
device = accelerator.device
# load your pretrained palm
palm = PaLM(
num_tokens = 20000,
dim = 512,
depth = 12
).to(device)
# load your pretrained reward model
reward_model = RewardModel(
palm,
num_binned_output = 5
).to(device)
# Train you reward model on mock data :
# mock data
seq = torch.randint(0, 20000, (1, 1024)).to(device)
prompt_mask = torch.zeros(1, 1024).bool().to(device) # which part of the sequence is prompt, which part is response
labels = torch.randint(0, 5, (1,)).to(device)
# train
loss = reward_model(seq, prompt_mask = prompt_mask, labels = labels)
accelerator.backward(loss)
# after much training
reward = reward_model(seq, prompt_mask = prompt_mask)
# ready your list of prompts for reinforcement learning
prompts = torch.randint(0, 256, (1, 512)).to(device) # 1 prompt
# pass it all to the trainer and train
trainer = RLHFTrainer(
palm = palm,
reward_model = reward_model,
prompt_token_ids = prompts
)
accelerator.print("Training")
trainer.train(
num_episodes = 1,
max_timesteps = 1,
update_timesteps = 1,
max_batch_size = 256,
max_seq_len = 2048,
eos_token = None,
temperature = 1.
)
# then, if it succeeded...
# generate say 10 samples and use the reward model to return the best one
accelerator.print("Generating answer")
answer = trainer.generate(2048, prompt = prompts[0], num_samples = 10) # (<= 2048,)
accelerator.print(f"answer: {answer}")