-
Notifications
You must be signed in to change notification settings - Fork 336
/
map.py
725 lines (594 loc) · 35.9 KB
/
map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import time
import numpy as np
import json
import math
import cv2
from collections import Counter, deque
from ordered_set import OrderedSet # from https://pypi.org/project/ordered-set/
from threading import RLock, Thread
from utils_geom import poseRt, add_ones, add_ones_1D
from parameters import Parameters
from frame import Frame, FrameBase
from keyframe import KeyFrame
from map_point import MapPoint, MapPointBase
from utils_sys import Printer
import g2o
import optimizer_g2o
kVerbose = True
kMaxLenFrameDeque = 20
if not kVerbose:
def print(*args, **kwargs):
pass
class Map(object):
def __init__(self):
self._lock = RLock()
self._update_lock = RLock()
self.frames = deque(maxlen=kMaxLenFrameDeque) # deque with max length, it is thread-safe
self.keyframes = OrderedSet()
self.points = set()
self.max_point_id = 0 # 0 is the first point id
self.max_frame_id = 0 # 0 is the first frame id
self.max_keyframe_id = 0 # 0 is the first keyframe id
# local map
#self.local_map = LocalWindowMap(map=self)
self.local_map = LocalCovisibilityMap(map=self)
@property
def lock(self):
return self._lock
@property
def update_lock(self):
return self._update_lock
def get_points(self):
with self._lock:
return self.points.copy()
def num_points(self):
with self._lock:
return len(self.points)
def get_frame(self,idx):
with self._lock:
return self.frames[idx]
def get_frames(self):
with self._lock:
return self.frames.copy()
def num_frames(self):
with self._lock:
return len(self.frames)
def get_keyframes(self):
with self._lock:
return self.keyframes.copy()
def get_last_keyframe(self):
with self._lock:
return self.keyframes[-1]
# get the last N=local_window map keyframes
def get_last_keyframes(self, local_window=Parameters.kLocalBAWindow):
with self._lock:
return OrderedSet(self.keyframes.copy()[-local_window:])
def num_keyframes(self):
with self._lock:
return len(self.keyframes)
def delete(self):
with self._lock:
for f in self.frames:
f.reset_points()
for kf in self.keyframes:
kf.reset_points()
def add_point(self, point):
with self._lock:
ret = self.max_point_id # override original id
point.id = ret
point.map = self
self.max_point_id += 1
#self.points.append(point)
self.points.add(point)
return ret
def remove_point(self, point):
with self._lock:
try:
self.points.remove(point)
except:
pass
point.delete()
def add_frame(self, frame, ovverride_id=False):
with self._lock:
ret = frame.id
if ovverride_id:
ret = self.max_frame_id
frame.id = ret # override original id
self.max_frame_id += 1
self.frames.append(frame)
return ret
def remove_frame(self, frame):
with self._lock:
try:
self.frames.remove(frame)
except:
pass
def add_keyframe(self, keyframe):
with self._lock:
assert(keyframe.is_keyframe)
ret = self.max_keyframe_id
keyframe.kid = ret # override original keyframe kid
keyframe.is_keyframe = True
keyframe.map = self
self.keyframes.add(keyframe)
self.max_keyframe_id += 1
return ret
def remove_keyframe(self, keyframe):
with self._lock:
assert(keyframe.is_keyframe)
try:
self.keyframes.remove(keyframe)
except:
pass
def num_keyframes(self):
return self.max_keyframe_id
def draw_feature_trails(self, img):
if len(self.frames) > 0:
img_draw = self.frames[-1].draw_all_feature_trails(img)
return img_draw
return img
# add new points to the map from 3D point estimations, frames and pairwise matches
# points3d is [Nx3]
def add_points(self, points3d, mask_pts3d, kf1: KeyFrame, kf2: KeyFrame, idxs1, idxs2, img1, do_check=True, cos_max_parallax=Parameters.kCosMaxParallax):
with self._lock:
assert(kf1.is_keyframe and kf2.is_keyframe) # kf1 and kf2 must be keyframes
assert(points3d.shape[0] == len(idxs1))
assert(len(idxs2) == len(idxs1))
idxs1 = np.array(idxs1)
idxs2 = np.array(idxs2)
added_points = []
out_mask_pts3d = np.full(points3d.shape[0], False, dtype=bool)
if mask_pts3d is None:
mask_pts3d = np.full(points3d.shape[0], True, dtype=bool)
if do_check:
# project points
uvs1, proj_depths1 = kf1.project_points(points3d)
bad_depths1 = proj_depths1 <= 0
uvs2, proj_depths2 = kf2.project_points(points3d)
bad_depths2 = proj_depths2 <= 0
is_stereo1 = np.zeros(len(idxs1), dtype=bool) if kf1.kps_ur is None else kf1.kps_ur[idxs1]>0
is_mono1 = np.logical_not(is_stereo1)
is_stereo2 = np.zeros(len(idxs2), dtype=bool) if kf2.kps_ur is None else kf2.kps_ur[idxs2]>0
is_mono2 = np.logical_not(is_stereo2)
# compute back-projected rays (unit vectors)
rays1 = np.dot(kf1.Rwc, add_ones(kf1.kpsn[idxs1]).T).T
norm_rays1 = np.linalg.norm(rays1, axis=-1, keepdims=True)
rays1 /= norm_rays1
rays2 = np.dot(kf2.Rwc, add_ones(kf2.kpsn[idxs2]).T).T
norm_rays2 = np.linalg.norm(rays2, axis=-1, keepdims=True)
rays2 /= norm_rays2
# compute dot products of rays
cos_parallaxs = np.sum(rays1 * rays2, axis=1)
if kf1.depths is not None and kf2.depths is not None:
# NOTE: 2.0 is certainly higher than any cos_parallax value
cos_parallax_stereo1 = np.where(is_stereo1, np.cos(2.*np.arctan2(kf1.camera.b/2,kf1.depths[idxs1])),2.0) if kf1.depths is not None else [2.0]*len(idxs1)
cos_parallax_stereo2 = np.where(is_stereo2, np.cos(2.*np.arctan2(kf2.camera.b/2,kf2.depths[idxs2])),2.0) if kf2.depths is not None else [2.0]*len(idxs2)
cos_parallax_stereo = np.minimum(cos_parallax_stereo1, cos_parallax_stereo2)
# check if we can recover bad-parallx points from stereo/rgbd data
try_recover3d_from_stereo = np.logical_or(cos_parallaxs<0, np.logical_or(cos_parallaxs>cos_parallax_stereo, cos_parallaxs>cos_max_parallax))
recover3d_from_stereo1 = np.logical_and(try_recover3d_from_stereo,
np.logical_and(is_stereo1,cos_parallax_stereo1<cos_parallax_stereo2))
recover3d_from_stereo2 = np.logical_and(np.logical_and(try_recover3d_from_stereo,np.logical_not(recover3d_from_stereo1)),
np.logical_and(is_stereo2,cos_parallax_stereo2<cos_parallax_stereo1))
recovered3d_from_stereo = np.logical_or(recover3d_from_stereo1, recover3d_from_stereo2)
if np.any(recover3d_from_stereo1):
points3d[recover3d_from_stereo1,:],_ = kf1.unproject_points_3d(idxs1[recover3d_from_stereo1], transform_in_world=True)
if np.any(recover3d_from_stereo2):
points3d[recover3d_from_stereo2,:],_ = kf2.unproject_points_3d(idxs2[recover3d_from_stereo2], transform_in_world=True)
else:
recovered3d_from_stereo = np.zeros(len(idxs1), dtype=bool)
# we don't have bad parallax where we recovered from stereo
bad_cos_parallaxs = np.logical_and(np.logical_or(cos_parallaxs < 0, cos_parallaxs > cos_max_parallax), np.logical_not(recovered3d_from_stereo))
# compute reprojection errors and check chi2
bad_chis2_1 = None
bad_chis2_2 = None
# compute mono reproj errors on kf1
errs1_mono_vec = uvs1 - kf1.kpsu[idxs1]
errs1 = np.where(is_mono1[:, np.newaxis], errs1_mono_vec, np.zeros(2)) # mono errors
errs1_sqr = np.sum(errs1 * errs1, axis=1) # squared reprojection errors
kps1_levels = kf1.octaves[idxs1]
invSigmas2_1 = Frame.feature_manager.inv_level_sigmas2[kps1_levels]
chis2_1_mono = errs1_sqr * invSigmas2_1 # chi square
# stereo reprojection error
# u = fx*x*invz+cx
# u_r = u - camera.bf*invz
# v1 = fy*y*invz+cy
# errX = u - kp.pt.x
# errY = v - kp.pt.y
# errX_r = u_r - kp_ur
# compute stereo reproj errors on kf1
if kf1.kps_ur is not None:
kp1_ur = kf1.kps_ur[idxs1] if kf1.kps_ur is not None else [-1]*len(idxs1) # kp right coords if available
depths1 = kf1.depths[idxs1]
safe_depths1 = np.where(depths1 == 0, np.inf, depths1) # to prevent division by zero
errs1_stereo_vec = np.concatenate((errs1_mono_vec, (uvs1[:,0] - kf1.camera.bf/safe_depths1 - kp1_ur)[:, np.newaxis]), axis=1) # stereo errors
errs1_stereo = np.where(is_stereo1[:, np.newaxis], errs1_stereo_vec, np.zeros(3))
errs1_stereo_sqr = np.sum(errs1_stereo * errs1_stereo, axis=1) # squared reprojection errors
chis2_1_stereo = errs1_stereo_sqr * invSigmas2_1 # chi square
bad_chis2_1 = np.logical_or(chis2_1_mono > Parameters.kChi2Mono, chis2_1_stereo > Parameters.kChi2Stereo)
else:
bad_chis2_1 = chis2_1_mono > Parameters.kChi2Mono
# compute mono reproj errors on kf1
errs2_mono_vec = uvs2 - kf2.kpsu[idxs2] # mono errors
errs2 = np.where(is_mono2[:, np.newaxis], errs2_mono_vec, np.zeros(2)) # mono errors
errs2_sqr = np.sum(errs2 * errs2, axis=1) # squared reprojection errors
kps2_levels = kf2.octaves[idxs2]
invSigmas2_2 = Frame.feature_manager.inv_level_sigmas2[kps2_levels]
chis2_2_mono = errs2_sqr * invSigmas2_2 # chi square
if kf2.kps_ur is not None:
kp2_ur = kf2.kps_ur[idxs2] if kf2.kps_ur is not None else [-1]*len(idxs2) # kp right coords if available
depths2 = kf2.depths[idxs2]
safe_depths2 = np.where(depths2 == 0, np.inf, depths2) # to prevent division by zero
errs2_stereo_vec = np.concatenate((errs2_mono_vec, (uvs2[:,0] - kf2.camera.bf/safe_depths2 - kp2_ur)[:, np.newaxis]), axis=1) # stereo errors
errs2_stereo = np.where(is_stereo2[:, np.newaxis], errs2_stereo_vec, np.zeros(3))
errs2_stereo_sqr = np.sum(errs2_stereo * errs2_stereo, axis=1) # squared reprojection errors
chis2_2_stereo = errs2_stereo_sqr * invSigmas2_2 # chi square
bad_chis2_2 = np.logical_or(chis2_2_mono > Parameters.kChi2Mono, chis2_2_stereo > Parameters.kChi2Stereo)
else:
bad_chis2_2 = chis2_2_mono > Parameters.kChi2Mono # chi-square 2 DOFs (Hartley Zisserman pg 119)
# scale consistency check
ratio_scale_consistency = Parameters.kScaleConsistencyFactor * Frame.feature_manager.scale_factor
scale_factors_x_depths1 = Frame.feature_manager.scale_factors[kps1_levels] * proj_depths1
scale_factors_x_depths1_x_ratio_scale_consistency = scale_factors_x_depths1*ratio_scale_consistency
scale_factors_x_depths2 = Frame.feature_manager.scale_factors[kps2_levels] * proj_depths2
scale_factors_x_depths2_x_ratio_scale_consistency = scale_factors_x_depths2*ratio_scale_consistency
bad_scale_consistency = np.logical_or( (scale_factors_x_depths1 > scale_factors_x_depths2_x_ratio_scale_consistency),
(scale_factors_x_depths2 > scale_factors_x_depths1_x_ratio_scale_consistency) )
# combine all checks
bad_points = bad_cos_parallaxs | bad_depths1 | bad_depths2 | bad_chis2_1 | bad_chis2_2 | bad_scale_consistency
if False: # for debugging
print(f'[add_points] bad_points = {np.sum(bad_points)} of {len(idxs1)}')
print(f'\t bad_depths1 = {np.sum(bad_depths1)}')
print(f'\t bad_depths2 = {np.sum(bad_depths2)}')
print(f'\t bad_chis2_1 = {np.sum(bad_chis2_1)}')
print(f'\t bad_chis2_2 = {np.sum(bad_chis2_2)}')
print(f'\t bad_scale_consistency = {np.sum(bad_scale_consistency)}')
# end if do_check
# get color patches
img_coords = np.rint(kf1.kps[idxs1]).astype(np.intp) # image keypoints coordinates
# build img patches coordinates
delta = Parameters.kColorPatchDelta
patch_extension = 1 + 2*delta # patch_extension x patch_extension
img_pts_start = img_coords - delta
img_pts_end = img_coords + delta
img_ranges = np.linspace(img_pts_start,img_pts_end,patch_extension,dtype=np.intp)[:,:].T
def img_range_elem(ranges,i):
return ranges[:,i]
for i, p in enumerate(points3d):
if not mask_pts3d[i]:
#print('p[%d] not good' % i)
continue
idx1_i = idxs1[i]
idx2_i = idxs2[i]
# perform different required checks before adding the point
if do_check:
if bad_points[i]:
continue
# check parallax is large enough (this is going to filter out all points when the inter-frame motion is almost zero)
# ray1 = np.dot(kf1.Rwc, add_ones_1D(kf1.kpsn[idx1_i]))
# ray2 = np.dot(kf2.Rwc, add_ones_1D(kf2.kpsn[idx2_i]))
# cos_parallax = ray1.dot(ray2) / (np.linalg.norm(ray1) * np.linalg.norm(ray2))
# if cos_parallax < 0 or cos_parallax > cos_max_parallax:
# #print('p[',i,']: ',p,' not enough parallax: ', cos_parallaxs[i])
# continue
# check points are visible on f1
# uv1, depth1 = kf1.project_point(p)
# is_visible1 = kf1.is_in_image(uv1, depth1) # N.B.: is_in_image() check is redundant since we check the reproj errror
# if not is_visible1:
# continue
# check points are visible on f2
# uv2, depth2 = kf2.project_point(p)
# is_visible2 = kf2.is_in_image(uv2, depth2) # N.B.: is_in_image() check is redundant since we check the reproj errror
# if not is_visible2:
# continue
# check reprojection error on f1
#kp1_level = kf1.octaves[idx1_i]
#invSigma2_1 = Frame.feature_manager.inv_level_sigmas2[kp1_level]
# err1 = uvs1[i] - kf1.kpsu[idx1_i]
# chi2_1 = np.inner(err1,err1)*invSigma2_1
# if chi2_1 > Parameters.kChi2Mono: # chi-square 2 DOFs (Hartley Zisserman pg 119)
# continue
# check reprojection error on f2
# kp2_level = kf2.octaves[idx2_i]
# invSigma2_2 = Frame.feature_manager.inv_level_sigmas2[kp2_level]
# err2 = uvs2[i] - kf2.kpsu[idx2_i]
# chi2_2 = np.inner(err2,err2)*invSigma2_2
# if chi2_2 > Parameters.kChi2Mono: # chi-square 2 DOFs (Hartley Zisserman pg 119)
# continue
#check scale consistency
# scale_factor_x_depth1 = Frame.feature_manager.scale_factors[kps1_levels[i]] * proj_depths1[i]
# scale_factor_x_depth2 = Frame.feature_manager.scale_factors[kps2_levels[i]] * proj_depths2[i]
# if (scale_factor_x_depth1 > scale_factor_x_depth2*ratio_scale_consistency) or \
# (scale_factor_x_depth2 > scale_factor_x_depth1*ratio_scale_consistency):
# continue
# get the color of the point
try:
#color = img1[int(round(kf1.kps[idx1_i, 1])), int(round(kf1.kps[idx1_i, 0]))]
#img_pt = np.rint(kf1.kps[idx1_i]).astype(np.int)
# color at the point
#color = img1[img_pt[1],img_pt[0]]
# buils color patch
#color_patch = img1[img_pt[1]-delta:img_pt[1]+delta,img_pt[0]-delta:img_pt[0]+delta]
#color = color_patch.mean(axis=0).mean(axis=0) # compute the mean color in the patch
# average color in a (1+2*delta) x (1+2*delta) patch
#pt_start = img_pts_start[i]
#pt_end = img_pts_end[i]
#color_patch = img1[pt_start[1]:pt_end[1],pt_start[0]:pt_end[0]]
# average color in a (1+2*delta) x (1+2*delta) patch
img_range = img_range_elem(img_ranges,i)
color_patch = img1[img_range[1][:,np.newaxis],img_range[0]]
#print('color_patch.shape:',color_patch.shape)
color = cv2.mean(color_patch)[:3] # compute the mean color in the patch
except IndexError:
Printer.orange('color out of range')
color = (255, 0, 0)
# add the point to this map
mp = MapPoint(p[0:3], color, kf2, idx2_i)
self.add_point(mp) # add point to this map
mp.add_observation(kf1, idx1_i)
mp.add_observation(kf2, idx2_i)
mp.update_info()
out_mask_pts3d[i] = True
added_points.append(mp)
return len(added_points), out_mask_pts3d, added_points
# add new points to the map from 3D point stereo-back-projection
# points3d is [Nx3]
def add_stereo_points(self, points3d, mask_pts3d, f: Frame, kf: KeyFrame, idxs, img):
with self._lock:
assert(kf.is_keyframe)
if mask_pts3d is None:
mask_pts3d = np.full(points3d.shape[0], True, dtype=bool)
img_coords = np.rint(kf.kps[idxs]).astype(np.intp) # image keypoints coordinates
# build img patches coordinates
delta = Parameters.kColorPatchDelta
patch_extension = 1 + 2*delta # patch_extension x patch_extension
img_pts_start = img_coords - delta
img_pts_end = img_coords + delta
img_ranges = np.linspace(img_pts_start,img_pts_end,patch_extension,dtype=np.intp)[:,:].T
def img_range_elem(ranges,i):
return ranges[:,i]
num_added_points = 0
for i, p in enumerate(points3d):
if not mask_pts3d[i]:
#print('p[%d] not good' % i)
continue
# get the color of the point
try:
img_range = img_range_elem(img_ranges,i)
color_patch = img[img_range[1][:,np.newaxis],img_range[0]]
#print('color_patch.shape:',color_patch.shape)
color = cv2.mean(color_patch)[:3] # compute the mean color in the patch
except IndexError:
Printer.orange('color out of range')
color = (255, 0, 0)
# add the point to this map
mp = MapPoint(p[0:3], color, kf, idxs[i])
# we need to add the point both the originary frame and the newly created keyframe
f.points[idxs[i]] = mp # add point to the frame
self.add_point(mp) # add point to this map
mp.add_observation(kf, idxs[i])
mp.update_info()
num_added_points +=1
return num_added_points
# remove points which have a big reprojection error
def remove_points_with_big_reproj_err(self, points):
with self._lock:
with self.update_lock:
#print('map points: ', sorted([p.id for p in self.points]))
#print('points: ', sorted([p.id for p in points]))
culled_pt_count = 0
for p in points:
# compute reprojection error
chi2s = []
for f, idx in p.observations():
uv = f.kpsu[idx]
proj,_ = f.project_map_point(p)
invSigma2 = Frame.feature_manager.inv_level_sigmas2[f.octaves[idx]]
err = (proj-uv)
chi2s.append(np.inner(err,err)*invSigma2)
# cull
mean_chi2 = np.mean(chi2s)
if np.mean(chi2s) > Parameters.kChi2Mono: # chi-square 2 DOFs (Hartley Zisserman pg 119)
culled_pt_count += 1
#print('removing point: ',p.id, 'from frames: ', [f.id for f in p.keyframes])
self.remove_point(p)
Printer.blue("# culled map points: ", culled_pt_count)
# BA considering all keyframes:
# - local keyframes are adjusted,
# - other keyframes are fixed
# - all points are adjusted
def optimize(self, local_window=Parameters.kLargeBAWindow, verbose=False, rounds=10, use_robust_kernel=False, do_cull_points = False, abort_flag=g2o.Flag()):
err = optimizer_g2o.bundle_adjustment(self.get_keyframes(), self.get_points(), local_window = local_window, verbose = verbose, rounds = rounds, use_robust_kernel=False, abort_flag=abort_flag)
if do_cull_points:
self.remove_points_with_big_reproj_err(self.get_points())
return err
# local BA: only local keyframes and local points are adjusted
def locally_optimize(self, kf_ref, verbose = False, rounds=10, abort_flag=g2o.Flag()):
keyframes, points, ref_keyframes = self.local_map.update(kf_ref)
print('local optimization window: ', sorted([kf.id for kf in keyframes]))
print(' refs: ', sorted([kf.id for kf in ref_keyframes]))
print(' #points: ', len(points))
#print(' points: ', sorted([p.id for p in points]))
#err = optimizer_g2o.optimize(frames, points, None, False, verbose, rounds)
err, ratio_bad_observations = optimizer_g2o.local_bundle_adjustment(keyframes, points, ref_keyframes, False, verbose, rounds, abort_flag=abort_flag, map_lock=self.update_lock)
Printer.green('local optimization - perc bad observations: %.2f %%' % (ratio_bad_observations*100) )
return err
# FIXME: to be updated according to new data structure changes
def serialize(self):
ret = {}
# static stuff
ret['FrameBase._id'] = FrameBase._id
ret['MapPointBase._id'] = MapPointBase._id
# non-static stuff
ret['frames'] = [f.to_json() for f in self.frames]
ret['keyframes'] = [kf.to_json() for kf in self.keyframes if not kf.is_bad]
ret['points'] = [p.to_json() for p in self.points if not p.is_bad]
ret['max_frame_id'] = self.max_frame_id
ret['max_point_id'] = self.max_point_id
ret['max_keyframe_id'] = self.max_keyframe_id
return json.dumps(ret)
# FIXME: to be updated according to new data structure changes
def deserialize(self, s):
ret = json.loads(s)
# static stuff
FrameBase._id = ret['FrameBase._id']
MapPointBase._id = ret['MapPointBase._id']
# non-static stuff
self.frames = [KeyFrame.from_json(f) if bool(f['is_keyframe']) else Frame.from_json(f) for f in ret['frames']]
self.keyframes = [KeyFrame.from_json(f) for f in ret['keyframes']]
self.points = [MapPoint.from_json(p) for p in ret['points']]
self.max_frame_id = ret['max_frame_id']
self.max_point_id = ret['max_point_id']
self.max_keyframe_id = ret['max_keyframe_id']
# now replace ids with actual objects
for f in self.frames:
f.replace_ids_with_objects(self.points, self.frames, self.keyframes)
for kf in self.keyframes:
kf.replace_ids_with_objects(self.points, self.frames, self.keyframes)
for p in self.points:
p.replace_ids_with_objects(self.points, self.frames, self.keyframes)
self.frames = deque(self.frames, maxlen=kMaxLenFrameDeque)
self.keyframes = OrderedSet(self.keyframes)
self.points = set(self.points)
def save(self, filename):
with open(filename, 'w') as f:
f.write(self.serialize())
Printer.green('\t ...map saved to: ', filename)
def load(self, filename):
with open(filename, 'rb') as f:
self.deserialize(f.read())
Printer.green('\t ...map loaded from: ', filename)
# Local map base class
class LocalMapBase(object):
def __init__(self, map=None):
self._lock = RLock()
self.map = map
self.keyframes = OrderedSet() # collection of local keyframes
self.points = set() # points visible in 'keyframes'
self.ref_keyframes = set() # collection of 'covisible' keyframes not in self.keyframes that see at least one point in self.points
@property
def lock(self):
return self._lock
def is_empty(self):
with self._lock:
return len(self.keyframes)==0
def get_points(self):
with self._lock:
return self.points.copy()
def num_points(self):
with self._lock:
return len(self.points)
def get_keyframes(self):
with self._lock:
return self.keyframes.copy()
def num_keyframes(self):
with self._lock:
return len(self.keyframes)
# given some input local keyframes, get all the viewed points and all the reference keyframes (that see the viewed points but are not in the local keyframes)
def update_from_keyframes(self, local_keyframes):
local_keyframes = set([kf for kf in local_keyframes if not kf.is_bad]) # remove possible bad keyframes
ref_keyframes = set() # reference keyframes: keyframes not in local_keyframes that see points observed in local_keyframes
good_points = set([p for kf in local_keyframes for p in kf.get_matched_good_points()]) # all good points in local_keyframes (only one instance per point)
for p in good_points:
# get the keyframes viewing p but not in local_keyframes
for kf_viewing_p in p.keyframes():
if (not kf_viewing_p.is_bad) and (not kf_viewing_p in local_keyframes):
ref_keyframes.add(kf_viewing_p)
# debugging stuff
# if not any([f in local_frames for f in p.keyframes()]):
# Printer.red('point %d without a viewing keyframe in input frames!!' %(p.id))
# Printer.red(' keyframes: ',p.observations_string())
# for f in local_frames:
# if p in f.get_points():
# Printer.red('point {} in keyframe {}-{} '.format(p.id,f.id,list(np.where(f.get_points() is p)[0])))
# assert(False)
with self.lock:
#local_keyframes = sorted(local_keyframes, key=lambda x:x.id)
#ref_keyframes = sorted(ref_keyframes, key=lambda x:x.id)
self.keyframes = local_keyframes
self.points = good_points
self.ref_keyframes = ref_keyframes
return local_keyframes, good_points, ref_keyframes
# from a given input frame compute:
# - the reference keyframe (the keyframe that sees most map points of the frame)
# - the local keyframes
# - the local points
def get_frame_covisibles(self, frame):
points = frame.get_matched_good_points()
#keyframes = self.get_local_keyframes()
#assert len(points) > 0
if len(points) == 0:
Printer.red('get_frame_covisibles - frame with not points')
# for all map points in frame check in which other keyframes are they seen
# increase counter for those keyframes
viewing_keyframes = [kf for p in points for kf in p.keyframes() if not kf.is_bad]# if kf in keyframes]
viewing_keyframes = Counter(viewing_keyframes)
kf_ref = viewing_keyframes.most_common(1)[0][0]
#local_keyframes = viewing_keyframes.keys()
# include also some not-already-included keyframes that are neighbors to already-included keyframes
for kf in list(viewing_keyframes.keys()):
second_neighbors = kf.get_best_covisible_keyframes(Parameters.kNumBestCovisibilityKeyFrames)
viewing_keyframes.update(second_neighbors)
children = kf.get_children()
viewing_keyframes.update(children)
if len(viewing_keyframes) >= Parameters.kMaxNumOfKeyframesInLocalMap:
break
local_keyframes_counts = viewing_keyframes.most_common(Parameters.kMaxNumOfKeyframesInLocalMap)
local_points = set()
local_keyframes = []
for kf,c in local_keyframes_counts:
local_points.update(kf.get_matched_points())
local_keyframes.append(kf)
return kf_ref, local_keyframes, local_points
# Local window map (last N keyframes)
class LocalWindowMap(LocalMapBase):
def __init__(self, map=None, local_window=Parameters.kLocalBAWindow):
super().__init__(map)
self.local_window = local_window
def update_keyframes(self, kf_ref=None):
with self._lock:
# get the last N=local_window keyframes
self.keyframes = self.map.get_last_keyframes(self.local_window)
return self.keyframes
def get_best_neighbors(self, kf_ref=None, N=Parameters.kLocalMappingNumNeighborKeyFrames):
return self.map.get_last_keyframes(N)
# update the local keyframes, the viewed points and the reference keyframes (that see the viewed points but are not in the local keyframes)
def update(self, kf_ref=None):
self.update_keyframes(kf_ref)
return self.update_from_keyframes(self.keyframes)
# Local map from covisibility graph
class LocalCovisibilityMap(LocalMapBase):
def __init__(self, map=None):
super().__init__(map)
def update_keyframes(self, kf_ref):
with self._lock:
assert(kf_ref is not None)
self.keyframes = OrderedSet()
self.keyframes.add(kf_ref)
neighbor_kfs = [kf for kf in kf_ref.get_covisible_keyframes() if not kf.is_bad]
self.keyframes.update(neighbor_kfs)
return self.keyframes
def get_best_neighbors(self, kf_ref, N=Parameters.kLocalMappingNumNeighborKeyFrames):
return kf_ref.get_best_covisible_keyframes(N)
# update the local keyframes, the viewed points and the reference keyframes (that see the viewed points but are not in the local keyframes)
def update(self, kf_ref):
self.update_keyframes(kf_ref)
return self.update_from_keyframes(self.keyframes)