generated from luizcartolano2/github-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_mlp.py
72 lines (58 loc) · 2.51 KB
/
test_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
import numpy as np
from src.MultilayerPerceptron import MultilayerPerceptron
from src.predict import predict_mlp
import torch
modes = ['impvol', 'histvol']
# modes = ['impvol']
for mode in modes:
if mode == 'impvol':
test_df = pd.read_csv('data-source/test_df.csv')
model_path = 'models/train_model_at_20-09-13.model.train'
else:
test_df = pd.read_csv('data-source/test_df_histvol.csv')
model_path = 'models/train_model_histvol_at_20-09-16.model.train'
# read x_values and y_values
y_values = test_df[['result']].values
x_values = test_df.drop(['result'], axis=1).values
M_mlp = MultilayerPerceptron(x_values.shape[1])
M_mlp.load_state_dict(torch.load(model_path))
use_cuda = torch.cuda.is_available()
if use_cuda:
print('CUDA used.')
M_mlp = M_mlp.cuda()
M_mlp.eval()
results = predict_mlp(x_values, M_mlp)
data = {'results': results.reshape(-1,),
'expected': y_values.reshape(-1,)}
final_df = pd.DataFrame(data=data)
final_df['diff'] = final_df['expected'] - final_df['results']
final_df['mse'] = np.mean(np.square(final_df['diff']))
final_df['rel'] = final_df['diff'] / final_df['expected']
final_df['bias'] = 100 * np.median(final_df['rel'])
final_df['aape'] = 100 * np.mean(np.abs(final_df['rel']))
final_df['mape'] = 100 * np.median(np.abs(final_df['rel']))
final_df['pe5'] = 100 * sum(np.abs(final_df['rel']) < 0.05) / len(final_df['rel'])
final_df['pe10'] = 100 * sum(np.abs(final_df['rel']) < 0.10) / len(final_df['rel'])
final_df['pe20'] = 100 * sum(np.abs(final_df['rel']) < 0.20) / len(final_df['rel'])
final_df.to_csv(f'data-source/mlp-results-{mode}.csv', index=False)
statistics = {
'max': np.max(final_df['diff']),
'mean': np.mean(final_df['diff']),
'median': np.median(final_df['diff']),
'min': np.min(final_df['diff']),
'rmse': np.sqrt(np.mean(np.power(final_df['diff'], 2))),
'sse': np.sum(np.power(final_df['diff'], 2)),
'std': np.std(final_df['diff']),
'mse': final_df['mse'].mean(),
'aape': final_df['aape'].mean(),
'mape': final_df['mape'].mean(),
'pe5': final_df['pe5'].mean(),
'pe10': final_df['pe10'].mean(),
'pe20': final_df['pe20'].mean(),
}
# write response to a .txt file
with open(f'data-source/mlp-statistics-{mode}.txt', 'w') as f:
for key, value in statistics.items():
f.write(f'{key}: {value} \n\n')
print()