forked from yassersouri/classify-text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
219 lines (168 loc) · 5.81 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import main
import util
import matplotlib.pyplot as plt
import sklearn.feature_extraction.text
import sklearn.datasets
import sklearn.naive_bayes
import sklearn.svm
import sklearn.cross_validation
import numpy
import sklearn.neighbors
def _main():
path = 'dataset'
NB(path)
# SVM(path)
# KNN(path)
# KNN_parameter(path)
def KNN(path):
print "Classifier: K Nearest Neighbors"
print "Train-Test Split"
# preprocess
main.reorganize_dataset(path)
main.remove_incompatible_files(path)
# load data
files = sklearn.datasets.load_files(path, shuffle = True)
# refine emails - delete unwanted text form them
util.refine_all_emails(files.data)
# feature Extractoin
# BOW
BOW = util.bagOfWords(files.data)
# TF
tf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TF = tf_transformer.transform(BOW)
# TFIDF
tfidf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TFIDF = tfidf_transformer.transform(BOW)
# build classifier
n_neighbors = 5
# weights = 'uniform'
weights = 'distance'
clf = sklearn.neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
# calculate results
i, BOW_results = split_test_classifier(clf, BOW, files.target)
i, TF_results = split_test_classifier(clf, TF, files.target)
i, TFIDF_results = split_test_classifier(clf, TFIDF, files.target)
# plot
plot_results(i, [BOW_results, TF_results, TFIDF_results], ['BOW', 'TF', 'TFIDF'])
def SVM(path):
print "Classifier: Support Vector Machine"
print "Train-Test Split"
# preprocess
main.reorganize_dataset(path)
main.remove_incompatible_files(path)
# load data
files = sklearn.datasets.load_files(path, shuffle = True)
# refine emails - delete unwanted text form them
util.refine_all_emails(files.data)
# feature Extractoin
# BOW
BOW = util.bagOfWords(files.data)
# TF
tf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TF = tf_transformer.transform(BOW)
# TFIDF
tfidf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TFIDF = tfidf_transformer.transform(BOW)
# build classifier
clf = sklearn.svm.LinearSVC()
# calculate results
i, BOW_results = split_test_classifier(clf, BOW, files.target)
i, TF_results = split_test_classifier(clf, TF, files.target)
i, TFIDF_results = split_test_classifier(clf, TFIDF, files.target)
# plot
plot_results(i, [BOW_results, TF_results, TFIDF_results], ['BOW', 'TF', 'TFIDF'])
def NB(path):
print "Classifier: Naive Bayes"
print "Train-Test Split"
# preprocess
main.reorganize_dataset(path)
main.remove_incompatible_files(path)
# load data
files = sklearn.datasets.load_files(path, shuffle = True)
# refine emails - delete unwanted text form them
util.refine_all_emails(files.data)
# feature Extractoin
# BOW
BOW = util.bagOfWords(files.data)
# TF
tf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TF = tf_transformer.transform(BOW)
# TFIDF
tfidf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TFIDF = tfidf_transformer.transform(BOW)
# build classifier
clf = sklearn.naive_bayes.MultinomialNB()
# calculate results
i, BOW_results = split_test_classifier(clf, BOW, files.target)
i, TF_results = split_test_classifier(clf, TF, files.target)
i, TFIDF_results = split_test_classifier(clf, TFIDF, files.target)
# plot
plot_results(i, [BOW_results, TF_results, TFIDF_results], ['BOW', 'TF', 'TFIDF'])
def split_test_classifier(clf, X, y):
results = []
i_ = []
print '================='
for i in range(1, 100):
print i
i_.append(i)
percent = i/100.0
# split
X_train, X_test, y_train, y_test = sklearn.cross_validation.train_test_split(X, y, test_size=percent)
# learn the model
clf.fit(X_train, y_train)
# predict
y_predicted = clf.predict(X_test)
# calculate percision
percision = numpy.mean(y_predicted == y_test)
results.append(percision)
return i_, results
def KNN_parameter(path):
print "Classifier: K Nearest Neighbors"
print "KFOLD parameter test"
# preprocess
main.reorganize_dataset(path)
main.remove_incompatible_files(path)
# load data
files = sklearn.datasets.load_files(path, shuffle = True)
# refine emails - delete unwanted text form them
util.refine_all_emails(files.data)
# feature Extractoin
# BOW
BOW = util.bagOfWords(files.data)
# TFIDF
tfidf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=False).fit(BOW)
TFIDF = tfidf_transformer.transform(BOW)
# k in kfold
n_cross_val = 5
# calculate results
i, uniform_results, weighted_results = KFOLD_KNN_parameter_test(TFIDF, files.target, n_cross_val = n_cross_val, n_neighbors = 5)
# plot
plot_results(i, [uniform_results, weighted_results], ['uniform', 'weighted'])
def KFOLD_KNN_parameter_test(X, y, n_cross_val = 5,n_neighbors = 5):
weights1 = 'uniform'
weights2 = 'distance'
results_1 = []
results_2 = []
i = []
for n_neighbors in range(2, 21):
print 'number of neighbors:', n_neighbors
# build two classifiers
clf1 = sklearn.neighbors.KNeighborsClassifier(n_neighbors, weights=weights1)
clf2 = sklearn.neighbors.KNeighborsClassifier(n_neighbors, weights=weights2)
scores1 = util.cross_validation(X, y, clf1, cv=n_cross_val)
scores2 = util.cross_validation(X, y, clf2, cv=n_cross_val)
i.append(n_neighbors)
results_1.append(scores1.mean())
results_2.append(scores2.mean())
return i, results_1, results_2
def plot_results(i, results_list, labels_list):
colors_list = ['red', 'blue', 'black', 'green', 'cyan', 'yellow']
if not len(results_list) == len(labels_list):
print 'un equal len in results and labels'
raise Exception
for (result, label, color) in zip(results_list, labels_list, colors_list):
plt.plot(i, result, color = color, lw=2.0, label=label)
plt.legend()
plt.show()
if __name__ == '__main__':
_main()