forked from yan259128/mathematics-modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
71 lines (60 loc) · 2.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from scipy.optimize import linprog
import numpy as np
MaxBicycleNum = 1000
Demands = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 0, 86, 120, 75, 122, 92, 129, 60, 105, 97,
2, 86, 0, 58, 124, 103, 149, 117, 60, 74, 119,
3, 109, 74, 0, 102, 88, 76, 140, 97, 70, 111,
4, 120, 81, 79, 0, 72, 58, 128, 75, 115, 129,
5, 70, 140, 109, 138, 0, 88, 114, 51, 140, 71,
6, 52, 100, 70, 116, 50, 0, 148, 70, 82, 66,
7, 88, 80, 91, 100, 64, 69, 0, 59, 114, 51,
8, 119, 149, 90, 139, 93, 132, 135, 0, 110, 143,
9, 106, 95, 107, 97, 150, 128, 91, 141, 0, 117,
10, 106, 138, 86, 116, 116, 112, 95, 146, 136, 0]
Demands = np.array(Demands)
Demands = Demands.reshape((11, 11))[1:, 1:]
# 每小时的进车上限
BicycleIn = Demands.sum(0)
# 每小时的出车上限
BicycleOUT = Demands.sum(1)
# 计算进车的比例
# 按行进行归一化的需求矩阵
NormalizedDemandsOut = Demands / Demands.sum(1, keepdims=True)
# print(NormalizedDemandsOut.sum(1))
def ride_bicycle(bicycles : np.array, slice_num = 6):
remains = bicycles - BicycleOUT
remains = remains * (remains > 0).astype(int)
print('remains: ', remains)
out_bicycles = bicycles - remains
total_out = out_bicycles.sum()
out_bicycles = out_bicycles * NormalizedDemandsOut
out_bicycles = out_bicycles.round(0).astype(int)
# 检查四舍五入前后的数量是否一致
r = total_out - out_bicycles.sum()
if r > 0:
gaps = Demands/slice_num - out_bicycles # 需求缺口量
gaps = np.floor(gaps) * (gaps > 0).astype(int)
gaps = gaps.flatten()
adj = np.zeros_like(gaps, dtype=int)
idx = gaps.argsort()
for i in idx:
if r <= 0: break
if r >= gaps[i]:
adj[i] += gaps[i]
r = r - gaps[i]
else:
adj[i] += r
r = 0
adj = adj.reshape(out_bicycles.shape)
print('r=', total_out - out_bicycles.sum(), ', sum adj: ', adj.sum())
out_bicycles += adj
elif r < 0:
adj = np.zeros_like(out_bicycles, dtype=int)
adj = adj.flatten()
pass # todo
print('out_bicycles: \n', out_bicycles, out_bicycles.sum())
InitBicycleNums = MaxBicycleNum / BicycleOUT.sum() * BicycleOUT
InitBicycleNums = InitBicycleNums.round(0).astype(int)
print("InitBicycleNums: ", InitBicycleNums*3)
ride_bicycle(InitBicycleNums)