Skip to content

Latest commit

 

History

History
234 lines (197 loc) · 8.3 KB

unique_binary_search_trees_ii.md

File metadata and controls

234 lines (197 loc) · 8.3 KB

Unique Binary Search Trees II

Source

Given n, generate all structurally unique BST's
(binary search trees) that store values 1...n.

Example
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

题解

Unique Binary Search Trees 的升级版,这道题要求的不是二叉搜索树的数目,而是要构建这样的树。分析方法仍然是可以借鉴的,核心思想为利用『二叉搜索树』的定义,如果以 i 为根节点,那么其左子树由[1, i - 1]构成,右子树由[i + 1, n] 构成。要构建包含1到n的二叉搜索树,只需遍历1到n中的数作为根节点,以i为界将数列分为左右两部分,小于i的数作为左子树,大于i的数作为右子树,使用两重循环将左右子树所有可能的组合链接到以i为根节点的节点上。

容易看出,以上求解的思路非常适合用递归来处理,接下来便是设计递归的终止步、输入参数和返回结果了。由以上分析可以看出递归严重依赖数的区间和i,那要不要将i也作为输入参数的一部分呢?首先可以肯定的是必须使用『数的区间』这两个输入参数,又因为i是随着『数的区间』这两个参数的,故不应该将其加入到输入参数中。分析方便,不妨设『数的区间』两个输入参数分别为startend.

接下来谈谈终止步的确定,由于根据i拆分左右子树的过程中,递归调用的方法中入口参数会缩小,且存在start <= i <= end, 故终止步为start > end. 那要不要对start == end返回呢?保险起见可以先写上,后面根据情况再做删改。总结以上思路,简单的伪代码如下:

helper(start, end) {
    result;
    if (start > end) {
        result.push_back(NULL);
        return;
    } else if (start == end) {
        result.push_back(TreeNode(i));
        return;
    }

    // dfs
    for (int i = start; i <= end; ++i) {
        leftTree = helper(start, i - 1);
        rightTree = helper(i + 1, end);
        // link left and right sub tree to the root i
        for (j in leftTree ){
            for (k in rightTree) {
                root = TreeNode(i);
                root->left = leftTree[j];
                root->right = rightTree[k];
                result.push_back(root);
            }
        }
    }

    return result;
}

大致的框架如上所示,我们来个简单的数据验证下,以[1, 2, 3]为例,调用堆栈图如下所示:

  1. helper(1,3)
    • [leftTree]: helper(1, 0) ==> return NULL
    • ---loop i = 2---
    • [rightTree]: helper(2, 3)
      1. [leftTree]: helper(2,1) ==> return NULL
      2. [rightTree]: helper(3,3) ==> return node(3)
      3. [for loop]: ==> return (2->3)
    • ---loop i = 3---
      1. [leftTree]: helper(2,2) ==> return node(2)
      2. [rightTree]: helper(4,3) ==> return NULL
      3. [for loop]: ==> return (3->2)
  2. ...

简单验证后可以发现这种方法的**核心为递归地构造左右子树并将其链接到相应的根节点中。**对于startend相等的情况的,其实不必单独考虑,因为start == end时其左右子树均返回空,故在for循环中返回根节点。当然单独考虑可减少递归栈的层数,但实际测下来后发现运行时间反而变长了不少 :(

Python

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""
class Solution:
    # @paramn n: An integer
    # @return: A list of root
    def generateTrees(self, n):
        return self.helper(1, n)

    def helper(self, start, end):
        result = []
        if start > end:
            result.append(None)
            return result

        for i in xrange(start, end + 1):
            # generate left and right sub tree
            leftTree = self.helper(start, i - 1)
            rightTree = self.helper(i + 1, end)
            # link left and right sub tree to root(i)
            for j in xrange(len(leftTree)):
                for k in xrange(len(rightTree)):
                    root = TreeNode(i)
                    root.left = leftTree[j]
                    root.right = rightTree[k]
                    result.append(root)

        return result

C++

/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution {
public:
    /**
     * @paramn n: An integer
     * @return: A list of root
     */
    vector<TreeNode *> generateTrees(int n) {
        return helper(1, n);
    }

private:
    vector<TreeNode *> helper(int start, int end) {
        vector<TreeNode *> result;
        if (start > end) {
            result.push_back(NULL);
            return result;
        }

        for (int i = start; i <= end; ++i) {
            // generate left and right sub tree
            vector<TreeNode *> leftTree = helper(start, i - 1);
            vector<TreeNode *> rightTree = helper(i + 1, end);
            // link left and right sub tree to root(i)
            for (int j = 0; j < leftTree.size(); ++j) {
                for (int k = 0; k < rightTree.size(); ++k) {
                    TreeNode *root = new TreeNode(i);
                    root->left = leftTree[j];
                    root->right = rightTree[k];
                    result.push_back(root);
                }
            }
        }

        return result;
    }
};

Java

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     * @paramn n: An integer
     * @return: A list of root
     */
    public List<TreeNode> generateTrees(int n) {
        return helper(1, n);
    }

    private List<TreeNode> helper(int start, int end) {
        List<TreeNode> result = new ArrayList<TreeNode>();
        if (start > end) {
            result.add(null);
            return result;
        }

        for (int i = start; i <= end; i++) {
            // generate left and right sub tree
            List<TreeNode> leftTree = helper(start, i - 1);
            List<TreeNode> rightTree = helper(i + 1, end);
            // link left and right sub tree to root(i)
            for (TreeNode lnode: leftTree) {
                for (TreeNode rnode: rightTree) {
                    TreeNode root = new TreeNode(i);
                    root.left = lnode;
                    root.right = rnode;
                    result.add(root);
                }
            }
        }

        return result;
    }
}

源码分析

  1. 异常处理,返回None/NULL/null.
  2. 遍历start->end, 递归得到左子树和右子树。
  3. 两重for循环将左右子树的所有可能组合添加至最终返回结果。

注意 DFS 辅助方法helper中左右子树及返回根节点的顺序。

复杂度分析

递归调用,一个合理的数组区间将生成新的左右子树,时间复杂度为指数级别,使用的临时空间最后都被加入到最终结果,空间复杂度(堆)近似为 $$O(1)$$, 栈上的空间较大。

Reference