- leetcode: Unique Binary Search Trees II | LeetCode OJ
- lintcode: (164) Unique Binary Search Trees II
Given n, generate all structurally unique BST's
(binary search trees) that store values 1...n.
Example
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
题 Unique Binary Search Trees 的升级版,这道题要求的不是二叉搜索树的数目,而是要构建这样的树。分析方法仍然是可以借鉴的,核心思想为利用『二叉搜索树』的定义,如果以 i 为根节点,那么其左子树由[1, i - 1]构成,右子树由[i + 1, n] 构成。要构建包含1到n的二叉搜索树,只需遍历1到n中的数作为根节点,以i
为界将数列分为左右两部分,小于i
的数作为左子树,大于i
的数作为右子树,使用两重循环将左右子树所有可能的组合链接到以i
为根节点的节点上。
容易看出,以上求解的思路非常适合用递归来处理,接下来便是设计递归的终止步、输入参数和返回结果了。由以上分析可以看出递归严重依赖数的区间和i
,那要不要将i
也作为输入参数的一部分呢?首先可以肯定的是必须使用『数的区间』这两个输入参数,又因为i
是随着『数的区间』这两个参数的,故不应该将其加入到输入参数中。分析方便,不妨设『数的区间』两个输入参数分别为start
和end
.
接下来谈谈终止步的确定,由于根据i
拆分左右子树的过程中,递归调用的方法中入口参数会缩小,且存在start <= i <= end
, 故终止步为start > end
. 那要不要对start == end
返回呢?保险起见可以先写上,后面根据情况再做删改。总结以上思路,简单的伪代码如下:
helper(start, end) {
result;
if (start > end) {
result.push_back(NULL);
return;
} else if (start == end) {
result.push_back(TreeNode(i));
return;
}
// dfs
for (int i = start; i <= end; ++i) {
leftTree = helper(start, i - 1);
rightTree = helper(i + 1, end);
// link left and right sub tree to the root i
for (j in leftTree ){
for (k in rightTree) {
root = TreeNode(i);
root->left = leftTree[j];
root->right = rightTree[k];
result.push_back(root);
}
}
}
return result;
}
大致的框架如上所示,我们来个简单的数据验证下,以[1, 2, 3]为例,调用堆栈图如下所示:
- helper(1,3)
- [leftTree]: helper(1, 0) ==> return NULL
- ---loop i = 2---
- [rightTree]: helper(2, 3)
- [leftTree]: helper(2,1) ==> return NULL
- [rightTree]: helper(3,3) ==> return node(3)
- [for loop]: ==> return (2->3)
- ---loop i = 3---
- [leftTree]: helper(2,2) ==> return node(2)
- [rightTree]: helper(4,3) ==> return NULL
- [for loop]: ==> return (3->2)
- ...
简单验证后可以发现这种方法的**核心为递归地构造左右子树并将其链接到相应的根节点中。**对于start
和end
相等的情况的,其实不必单独考虑,因为start == end
时其左右子树均返回空,故在for
循环中返回根节点。当然单独考虑可减少递归栈的层数,但实际测下来后发现运行时间反而变长了不少 :(
"""
Definition of TreeNode:
class TreeNode:
def __init__(self, val):
this.val = val
this.left, this.right = None, None
"""
class Solution:
# @paramn n: An integer
# @return: A list of root
def generateTrees(self, n):
return self.helper(1, n)
def helper(self, start, end):
result = []
if start > end:
result.append(None)
return result
for i in xrange(start, end + 1):
# generate left and right sub tree
leftTree = self.helper(start, i - 1)
rightTree = self.helper(i + 1, end)
# link left and right sub tree to root(i)
for j in xrange(len(leftTree)):
for k in xrange(len(rightTree)):
root = TreeNode(i)
root.left = leftTree[j]
root.right = rightTree[k]
result.append(root)
return result
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @paramn n: An integer
* @return: A list of root
*/
vector<TreeNode *> generateTrees(int n) {
return helper(1, n);
}
private:
vector<TreeNode *> helper(int start, int end) {
vector<TreeNode *> result;
if (start > end) {
result.push_back(NULL);
return result;
}
for (int i = start; i <= end; ++i) {
// generate left and right sub tree
vector<TreeNode *> leftTree = helper(start, i - 1);
vector<TreeNode *> rightTree = helper(i + 1, end);
// link left and right sub tree to root(i)
for (int j = 0; j < leftTree.size(); ++j) {
for (int k = 0; k < rightTree.size(); ++k) {
TreeNode *root = new TreeNode(i);
root->left = leftTree[j];
root->right = rightTree[k];
result.push_back(root);
}
}
}
return result;
}
};
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @paramn n: An integer
* @return: A list of root
*/
public List<TreeNode> generateTrees(int n) {
return helper(1, n);
}
private List<TreeNode> helper(int start, int end) {
List<TreeNode> result = new ArrayList<TreeNode>();
if (start > end) {
result.add(null);
return result;
}
for (int i = start; i <= end; i++) {
// generate left and right sub tree
List<TreeNode> leftTree = helper(start, i - 1);
List<TreeNode> rightTree = helper(i + 1, end);
// link left and right sub tree to root(i)
for (TreeNode lnode: leftTree) {
for (TreeNode rnode: rightTree) {
TreeNode root = new TreeNode(i);
root.left = lnode;
root.right = rnode;
result.add(root);
}
}
}
return result;
}
}
- 异常处理,返回None/NULL/null.
- 遍历start->end, 递归得到左子树和右子树。
- 两重
for
循环将左右子树的所有可能组合添加至最终返回结果。
注意 DFS 辅助方法helper
中左右子树及返回根节点的顺序。
递归调用,一个合理的数组区间将生成新的左右子树,时间复杂度为指数级别,使用的临时空间最后都被加入到最终结果,空间复杂度(堆)近似为