-
Notifications
You must be signed in to change notification settings - Fork 0
/
lattice.tex
1330 lines (1038 loc) · 89.1 KB
/
lattice.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
\usepackage{ctex}
\usepackage{tikz}
\usetikzlibrary{cd}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
%\usepackage{unicode-math}
\usepackage{hyperref} %url
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan,
pdftitle={Overleaf Example},
pdfpagemode=FullScreen,
}
\usepackage[textwidth=18cm]{geometry} % 设置页宽=18
\usepackage{blindtext}
\usepackage{bm}
\parindent=0pt
\setlength{\parindent}{2em}
\usepackage{indentfirst}
\usepackage{xcolor}
\usepackage{titlesec}
\titleformat{\section}[block]{\color{blue}\Large\bfseries\filcenter}{}{1em}{}
\titleformat{\subsection}[hang]{\color{red}\Large\bfseries}{}{0em}{}
%\setcounter{secnumdepth}{1} %section 序号
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{example}[theorem]{Example}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{exercise}{Exercise}[section]
\newcommand*{\xfunc}[4]{{#2}\colon{#3}{#1}{#4}}
\newcommand*{\func}[3]{\xfunc{\to}{#1}{#2}{#3}}
\newcommand\Set[2]{\{\,#1\mid#2\,\}} %集合
\newcommand\SET[2]{\Set{#1}{\text{#2}}} %
\newcommand\slattice{\mathcal{S}}
\newcommand\lattice{\mathcal{L}}
\newcommand\eql[1]{\ensuremath\mathbf{Eq}~{#1}}
\newcommand{\redt}[1]{\textcolor{red}{#1}}
\newcommand{\bluet}[1]{\textcolor{blue}{#1}}
\begin{document}
\title{Lattice}
\author{枫聆}
\maketitle
\tableofcontents
\newpage
\section{Ordered Sets}
\begin{definition}
\rm {\color{red} Partially ordered set} is a system $\mathcal{P} = (P,\leq)$ where $P$ is a nonempty set and $\leq$ is a binary relation on $P$ satisfying,for all $x,y,z \in P,$
\begin{enumerate}
\item \rm {\makebox[8cm][l]{$x \leq x,$} (reflexivity) }
\item \rm {\makebox[8cm][l]{if $x \leq y$ and $y \leq x$,then $x=y,$} (antisymmetry)}
\item \rm {\makebox[8cm][l]{if $x \leq y$ and $y \leq z$,then $x \leq z.$} (transitivity)}
\end{enumerate}
\end{definition}
\begin{definition}
\rm $\mathcal{C}$ is a {\color{red} chain} if for every $x,y \in \mathcal{C}$,either $x \leq y$ or $y \leq x.$
\end{definition}
{\color{blue} chain上的元素都可以相互比较,所以它是totally ordered 或者 linearly ordered}.
\begin{definition}
\rm We say that $x$ is {\color{red} covered} by $y$ in $\mathcal{P}$,written $x \prec y$,if $x \leq y$ and there is no $z \in P$ with $x \leq z \leq y$.
\end{definition}
\begin{definition}
\rm {\color{red} Hasse diagram} for a finite partially order set $\mathcal{P}$: the elements of $P$ are represented by points in the plane, and a line is drawn from $a$ up to $b$ precisely when $a \prec b$.
\end{definition}
\begin{center}
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZARgBoAGAXVJADcBDAGwFcYkQAKM7gShAF9S6TLnyEUAJlLFqdJq3ZdpFPoOHY8BIuWmyGLNok47eAoSAwaxRbnvmHOZE6vOXRWlDol2Dinc7N1d3ESUgBmHwUjDn8VQIsRTRCpbxp9KMcKOLUEqw9Q1LlfaJNs2RgoAHN4IlAAMwAnCABbJB0QHAgkKRAACxh6KHZIMDYcxpa2mk6kMJp+weGCMfMJ1sR2mcQyPoGhoxGV+qb1na2ANnm9pdH4taQAdmmuxABWK8WD5buTpAAWZ5Id67T7gb7jX6IS4dF7Ahb7MG3CGTRBzGH-D4Iw4-FFoi6Ym5HED3RA9LZPEFY8GrSFnF4U+GEnHrMkvAGUpn8Sj8IA
\begin{tikzcd}
& {(1,1,1)} \arrow[ld, no head] \arrow[d, no head] \arrow[rd, no head] & \\
{(0,1,1)} \arrow[rd, no head] \arrow[d, no head] & {(1,0,1)} \arrow[ld, no head] \arrow[rd, no head] & {(1,1,0)} \arrow[d, no head] \arrow[ld, no head] \\
{(0,0,1)} \arrow[rd, no head] & {(0,1,0)} \arrow[d, no head] & {(1,0,0)} \arrow[ld, no head] \\
& {(0,0,0)} &
\end{tikzcd}
\end{center}
\begin{definition}
\rm Given a partially order set, $f$ is a {\color{red} order preserving map} satisfying the condition $x \leq y$ implies $f(x) \leq f(y)$.
\end{definition}
\begin{definition}
\rm Given two posets $(P,\leq_S)$ and $(Q,\leq_Q)$, $f: P \to Q$ is an {\color{red}order-reflecting map} if and only if $f(x) \leq_Q f(y) \Rightarrow x \leq_S y $
\end{definition}
\begin{definition}
\rm Given two posets $(P,\leq_S)$ and $(Q,\leq_Q)$,an {\color{red} order isomorphism} from $(P,\leq_S)$ to $(Q,\leq_Q)$ is a bijective order preserving map.
\end{definition}
\begin{definition}
\rm Given two posets $(P,\leq_S)$ and $(Q,\leq_Q)$,an {\color{red} order embedding} from $(P,\leq_S)$ to $(Q,\leq_Q)$ is a both order-preserving and order-reflecting map that $x \leq y \iff f(x) \leq f(y)$.
\end{definition}
{\color{blue}相比order isomorphism而言稍微弱一点,不需要是一个surjective}.
\begin{definition}
\rm An {\color{red} ideal} $I$ of a partially ordered set $\mathcal{P}$ is a subset of the elements of $P$ which satisfy the property that if $x \in \mathcal{P}$ and exists $y \in I$ with $x \leq y$,then $x \in I$.
\end{definition}
{ \color{blue} 衍生自the ideal of ring,后面我们将会看见 the ideal of lattice}.
\begin{definition}
\rm Given an ordered set $\mathcal{P}=(P,\leq)$. The {\color{red} dual of $P$} is another poset $\mathcal{P}^d=(P,\leq^d)$ with the order relation defined by $x \leq^d y \iff y \leq x$.
\end{definition}
\begin{definition}
\rm The dual notion of an ideal is called a {\color{red} filter} that $F$ is a subset of $P$ such $x \geq y \in F$ implies $x \in F$
\end{definition}
{\color{blue} 类似的还有principle ideal和principle filter. 就是通过一个元素生成的}.
\begin{definition}
\rm The poset $\mathcal{P}$ has a {\color{red} maximum}(element) if there exists $x \in P$ such that $y \leq x$ for all $x \in P$.
An element $x \in P$ is {\color{red} maximal} if there is no element $y \in P$ with $x \leq y$ and $x \neq y$.
\end{definition}
{\color{blue} maximum是一个名词表示最大值(greatest),maximal是一个形容词表示极大的意思. 在poset中可能不只有一个maximal element}.
\begin{lemma}
\rm The following are equivalent for an poset $\mathcal{P}$.
\begin{enumerate}
\item Every nonempty subset $S \subseteq P$ contains an element minimal in $S$.
\item $\mathcal{P}$ contains no infinite descending chain \[a_0 > a_1 > a_2 > \cdots.\]{\color{blue} 这里去掉等号是指$a_0 \neq a_1 \neq a_2 \neq \cdots$}
\item If \[a_0 \geq a_1 \geq a_2 \geq \cdots\] in $\mathcal{P}$,then there exists $k$ such that $a_n = a_k$ for all $n \geq k$.
\end{enumerate}
\end{lemma}
{\color{red} 这个lemma被称为descending chain condition(DCC). 对偶地也有ascending chain condition(ACC). original 'a partially ordered set $\mathcal{P}$ requires that all decreasing sequences in $\mathcal{P}$ become eventually constant'}.
\begin{proof}
(2) $\Rightarrow$ (3). 前提只存在finite descending chain. 假设(3)不成立. 若$a_0 \geq a_1 \geq a_2 \geq \cdots$是infinite chain, 则对于任意的$k$,都能找到$n \geq k$使得$a_n \neq a_k$且$a_k \geq a_n$,那么$a_k > a_n$. 这样从$k=0,1,2,\cdots$开始我们每次都可以找到$a_{n_0} > a_{n_1} > \cdots$. 这样我们实际构造了一个infinite descending chain,这是和前提矛盾的. 若$a_0 \geq a_1 \geq a_2 \geq \cdots$是一个finite chain,它的最后一个元素显然是满足(3),这和假设是矛盾的.
(3) $\Rightarrow$ (2). 也是分infinite chain和finite chain来讨论,finite是显然的,infinite的时候可以把它变成finite.
(1) $\Rightarrow$ (2). (1)前提满足下,假设(2)不成立,即$\mathcal{P}$存在infinite descending chain. 把这个chain上的所有元素取出来组成一个subset $S$,那么任取$a_k$都有$a_{k+1} \leq a_k$. 即找不到minimal.
(2) $\Rightarrow$ (1). (2)前提满足下,假设(1)不成立. 这里需要用一下{\color{blue} 选择公理}了,定义$S$上一个选择函数$\func{f}{S}{T}$,其中$T \in S$. 让$a_0 = f(S)$,递归地定义对任意的$i \in \omega$有$a_{i+1} = f(\Set{s \in S}{s < a_i})$. 接下来让这个definition make sense,(2)前提下$S$是没有minimal, 所以$\Set{s \in S}{s \leq a_i}$不是empty set. 这样就找到了一个infinite descending chain,与假设矛盾.
(1) $\Rightarrow$ (2) $\Rightarrow$ (3).
(3) $\Rightarrow$ (2) $\Rightarrow$ (1).
{\color{blue} done well}!
\end{proof}
\begin{lemma}
\rm Let $\mathcal{P}$ be an poset satisfyint the DCC. If $\varphi(x)$ is statement such that
\begin{enumerate}
\item $\varphi(x)$ holds for all minimal elements of $P$,and
\item whenever $\varphi(y)$ holds for all $y < x$,then $\varphi(x)$ holds,
\end{enumerate}
then $\varphi(x)$ is true for every element of $P$.
\end{lemma}
{\color{blue} 这个lemma有点意思,如果对$P$上所有的minimal element $m$都有命题$\varphi(m)$成立, 且$\mathcal{P}$满足DCC. 那么再加上一个条件: 只要对任意元素$x \in P$,满足$y < x$都有$\varphi(y)$成立. 则对任意元素$x \in P$都有$\varphi(x)$成立}.
\begin{proof}
其实(1)是(2)的一个special case. 在(1)(2)hold的情况下,我们试想一下$\varphi(x)$没有被hold住的是哪些元素呢? 即对于某个$x$,存在$y < x$使得$\varphi(y)$没有被hold. 递归地,我们再去考虑这个$y$. 那么这里就存在一条descending chain在这里,由于$\mathcal{P}$是满足$DCC$,所以这个descending chain是infinite的. 这条chain的结尾显然是一个minimal element,但是它是满足$\varphi(x)$. 所以实际上是不存在这里的$x$不满足$\varphi(x)$.
\end{proof}
\begin{definition}
\rm Let $\mathcal{P}$ be poset. Two elements $a$ and $b$ of $\mathcal{P}$ are called {\color{red} comparable} if $a \leq b$ or $a \geq b$. Otherwise, they are called {\color{red}incomparable}.
\end{definition}
{\color{blue} 元素的可比性}.
\begin{definition}
\rm An {\color{red} antichain} in $\mathcal{P}$ is a subset $A$ of $\mathcal{P}$ in which each pair of different element are incomparable.
\end{definition}
\begin{definition}
\rm Define the {\color{red} width} of an poset $\mathcal{P}$ by
$$
w(\mathcal{P}) = \sup\Set{|A|}{\text{$A$ is an antichain in $\mathcal{P}$}}
$$
where $|A|$ denotes the cardinality(集合的势) of $A$.
\end{definition}
\begin{definition}
\rm We define the {\color{red} chain-covering-number} CCN $c(\mathcal{P})$ to be the least cardinal number k, such that $P$ is a union of $k$ chains(finite) of $P$, means $P = \bigcup C_i$.
\end{definition}
{\color{blue} 拿同等最小规模的finite chain把整个poset盖住}.
\begin{lemma}
Suppose $P = \bigcup C_i$ where $i \in I$,then $ w(\mathcal{P}) \leq |I|$.
\end{lemma}
\begin{proof}
这里前提条件是任意一个chain cover. 因为对任意一个antichain $A$和$C_i$有$|A \cap C_i| \leq 1$,且$A \in \bigcup C_i$,所以如果$A$里面有两个以上的元素,那么你要分开塞到$C_i$上,且每个$C_i$你都只能塞一个,那么最多你可以每个$C_i$上都塞一个进去,因此就有$w(P) \leq |I|$.
\end{proof}
\begin{theorem}
\rm (Dilworth ,1950) Let $\mathcal{P}$ be a finite poset. $w(\mathcal{P})$ is width. Then $\mathcal{P}$ is a union of $w(\mathcal{P})$-chains.
\end{theorem}
\begin{proof}
TODO. 这有意思
\end{proof}
\newpage
\section{Semilattices, Lattices and Complete Lattices}
\subsection{Semilattice}
\begin{definition}
\rm A {\color{red} semilattice} is an algebra $\mathcal{S} = (S,*)$ satisfying, for all $x,y,z \in \slattice$,
\begin{enumerate}
\item $x * x = x,$
\item $x * y = y *x,$
\item $(x*y)*z = x*(y*z).$
\end{enumerate}
where $*$ is binary operator.
{\color{red} 换句话说semilattice就是一个idempotent commutative semigroup(幂等交换半群)}.
\end{definition}
\begin{theorem}
\rm In a semilattice $\slattice$,define $x \leq y$ if $x * y = x$. Then $(S,\leq)$ is a poset in which every pair of elements has a greater lower bound(generally finite subset of poset).
Conversely,given an poset $P$ with that property,define $x * y = g.l.b(x,y).$ Then $(P,*)$ is a semilattice.
\end{theorem}
\begin{proof}
先证明这个是一个poset.
\begin{enumerate}
\item $x * x = x$ implies $x \leq x,$
\item if $x \leq y$ and $x \geq y$, then $x = x*y = y*x = y,$
\item if $x \leq y$ and $ y \leq z$. then $x *z = (x * y)*z = x *(y *z) = x * y = x$, so $x \leq z$.
\end{enumerate}
这个greater lower bound就是$x * y$. 首先证明它是一个lower bound,$x *(x*y)=x*y$ and $y*(x*y) = x*y$,所以$x*y$是一个lower bound. 再来证明所有的lower bound都比它小,假设$z \leq x$和$z \leq y$,即$z$是$\{x,y\}$的一个lower bound. 那么$z * (x * y) = z * y = z$,所以$z \leq (x*y)$. 最后$x*y$的一个greater lower bound.
\end{proof}
{\color{blue} semilattice代数定义和poset上定义是等价的}.
\begin{definition}
\rm A semilattice with the above ordering is usually called {\color{red} meet semilattice} $(S, \wedge)$. 对偶地,使得$x \geq y \iff x * y = x$,则称$\slattice$为是一个{\color{red} join semilattice} $(S, \vee)$. 自然地在$(S,\leq)$下任意的pair都有一个least upper bound $x \vee y$.
\end{definition}
\begin{definition}\rm A {\color{red} homomorphism} between two semilattice is a map $\func{f}{\slattice}{\mathcal{T}}$ with the property that $f(x*y) = f(x) * f(y)$. An {\color{red} isomorphism} is a homomorphism that injective and surjective.
{\color{red} 一个semilattice homomorphism肯定是一个monotone function(相对于poset来说),但是一个monotone function并不一定是一个homomorphism}.
\end{definition}
{\color{blue} nothing new}... {\color{red} has some!}
\begin{definition}
\rm A semilattice is {\color{red} bounded} if there is a top/bottom(only want to require one) element.
\end{definition}
\begin{theorem}
\rm Let $\slattice$ be a meet semilattice $(S,\wedge)$. Define $\func{\phi}{S}{\mathcal{O}(S)}$ by
$$
\phi(x) = \Set{y \in S}{y \leq x}
$$
where $\mathcal{O}(S)$ is collection of all order ideals of $\slattice$. Then $\slattice$ is isomophic $(\mathcal{O}(S),\cap)$.
\end{theorem}
{\color{blue} 怎么感觉这些ideal都是principle ideal(the ideal is generate by the element)}.
\begin{proof}
$\cap$表示set intersection,$\phi$是order-preserving和order-reflecting还是比较obvious. 所以$\phi$是一个order embedding of $\slattice$ into $\mathcal{O}(\slattice)$. Moreover $\phi(x \wedge y) = \phi(x) \cap \phi(y)$ because $x \wedge y$ is the greatest lower bound of $\{x,y\}$,so that $z \leq x \wedge y$ if and only if $z \leq x$ and $z \leq y$.
\end{proof}
\newpage
\subsection{Lattice}
\begin{definition}
\rm A {\color{red} lattice} is an algebra $\lattice = (L,\wedge,\vee)$ satisfying,for all $x,y,z \in L,$
\begin{enumerate}
\item $x \wedge x = x$ and $x \vee x = x,$
\item $x \wedge y = y \wedge x$ and $x \vee y = y \vee x,$
\item $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ and $x \vee (y \vee z) = (x \vee y) \vee z,$
\item $x \wedge (x \vee y) = x$ and $x \vee (x \wedge y) = x.$
\end{enumerate}
\end{definition}
{\color{blue} 前三个公理保证$\lattice$同时是meet semilattice 和join semilattice. 最后一个公理交吸收律,它保证前面定理meet和join操作将会诱导出同一个order,将会在后面的证明过程中make sense}.
\begin{theorem}
\rm In a lattice $\lattice$,define $x \leq y$ if and only if $x \wedge y = x$. Then $(L,\leq)$ is a poset in which every pair of elements has a greatest lower bound and a least upper bound.
\end{theorem}
\begin{proof}
给定一个pair $(x,y)$. 前面已经证明了$x \wedge y$是它的一个greater lower bound,这里我们需要再证明$x \vee y$是它的least lower bound. 假设$z \geq x$,由$z \vee (z \wedge x) = z \vee x = z$,这里证明了$\vee$的基本性质,因此回到semilattice中证明least upper bound手法,设$z$是${x,y}$的一个upper bound,那么
$$
z \vee (x \vee y) = (z \vee x) \vee y = z \vee y = z.
$$
这里若$x \wedge y = x$,则$x \vee y = (x \wedge y) \vee y = y$. 类似地$x \vee y = y$,则$x \wedge y = x \wedge (x \vee y) = x$. 所以有一个很重要的结论就是{\color{blue} $x \wedge y = x \iff x \vee y = y$},这就是lattice definition中吸收律保证same order.
\end{proof}
{\color{red} 类似的我们可以通过一个poset构造lattice}.
\begin{theorem}
\rm Given an poset $\mathcal{P}$ with that above property,define $x \wedge y = \sup\{x,y\}$ and $x \vee y = \inf\{x,y\}$. Then $(P,\wedge,\vee)$ is a lattice.
\end{theorem}
{\color{blue} 所以实际上lattice可以有两种定义第一种是前面的代数定义,第二种就是在poset上定义join和meet操作,这一点要清楚}.
{\color{red} the definitions of homomorphism )}.
\begin{definition}
\rm If $\lattice$ is lattice and $L' \neq \emptyset$ is a subset of $L$ such that for every pair of elements $(a,b) \in L'$ both $a \wedge b$ and $a \vee b$ are in $L'$,where $\wedge$ and $\vee$ are the lattice operations of $\lattice$,then we say $L'$ with the same operations of $\lattice$ is a {\color{red} sublattice} of $\lattice$.
\end{definition}
\begin{definition}
\rm Two lattice $\lattice_1$ and $\lattice_2$ are {\color{red} isomorphic} if there is {\color{red} bijective} $\alpha$ from $\lattice_1$ to $\lattice_2$ such that for every $a,b$ in $\lattice_1$ the following two equations hold: $\alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$ and $\alpha(a \vee b) = \alpha(a) \vee \alpha(b)$. Such an $\alpha$ is called by an {\color{red} isomorphism}.
\end{definition}
{\color{red} 在用poset基础上定义的lattice之间的isomorphism也可以用下述定理来描述}.
\begin{theorem}
\rm Two lattices $\lattice_1$ and $\lattice_2$ are isomorphic iff there is a bijection $\alpha$ from $\lattice_1$ to
$\lattice_2$ such that both $\alpha$ and $\alpha^{-1}$ are {\color{red} order-preserving}.
\end{theorem}
\begin{proof}
如果$\alpha$是$\lattice_1$到$\lattice_2$的一个isomorphism和$a \leq b$ hold in $\lattice_1$. $a \leq b$ hold means $a = a \wedge b$,那么$\alpha(a) = \alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$,所以$\alpha(a) \leq \alpha(b)$. 反过来$\alpha^{-1}$也是一个isomorphism,所以$\alpha^{-1}$也是order-preserving的.
反过来如果$\alpha$是bijective的且$\alpha$和$\alpha^{-1}$都是order-preserving的. 给定$a,b \in \lattice_1$,有$a \leq a \vee b$,那么$\alpha(a) \leq \alpha(a \vee b )$. 同理对$b$也有$\alpha(b) \leq \alpha(a \vee b)$,那么$\alpha(a) \vee \alpha(b) \leq \alpha(a \vee b)$. 我们要把这个小于等于换成等于,就是要证明$\alpha(a \vee b)$确实是一个greatest upper bound,那么对应任意的upper $u$,即$\alpha(a) \vee \alpha(b) \leq u$,分别有$\alpha(a) \leq u$和$\alpha(b) \leq u$. 由于$\alpha^{-1}$也是order-preserving,所以有$a \leq \alpha^{-1}(u)$和$b \leq \alpha^{-1}(u)$,那么$a \vee b \leq \alpha^{-1}(u)$,在用$\alpha$作用一遍$\alpha(a \vee b) \leq u$. 到这里证明了$\alpha(a \vee b)$确实是一个greatest upper bound,即$\alpha(a) \vee \alpha(b) = \alpha(a \vee b)$. 同理也可以证$\alpha(b) \wedge \alpha(b) = \alpha(a \wedge b)$.
\end{proof}
\begin{example}
\rm 记录一个$f$是bijective但只有$f$ order-preserving,这样的$f$可能不是一个isomorphism. Hasse图可能画的不标准!
\begin{center}
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZARgBoAGAXVJADcBDAGwFcYkR6QBfU9TXfIRTlSxanSat2AI268QGbHgJEATKVXiGLNohABjOXyWCiZAMxbJukFCML+yocgCsFKzvacexgSpRuYjTaUnqyPg4m-q4aHqEG9op+zm6WwdbsdlziMFAA5vBEoABmAE4QALZIIiA4EEgALDQAFjD0dohgzIyMNDj0WIzsFfRocHX2ZZVIZLX1iG4gre1IXT19A0N6I2MTEVNViOpzSABsLW0da721m8Oj4-X75YfmffMA7Bcrnd03-YN7rsnvIDtV3jNvh1wAQ2M9pogahMjlD2JAwHDQS9ISdEG8lpc0bDJtiUbj8ctoejMSVSU1cYtKUSMSSEYtkecCT8YSz4YdOcivlyqcTslwgA
\begin{tikzcd}
& a \arrow[rrrr, maps to] \arrow[ld, no head] \arrow[rdd, no head] & & & & a' \arrow[d, no head] \\
b \arrow[rrrrr, maps to] \arrow[rdd, no head] & & & & & b' \arrow[d, no head] \\
& & c \arrow[rrr, maps to] \arrow[ld, no head] & & & c' \arrow[d, no head] \\
& d \arrow[rrrr, maps to] & & & & d '
\end{tikzcd}
\end{center}
其中$f(b \wedge c) \neq f(b) \wedge f(c)$.
\end{example}
\newpage
\subsection{Complete Lattice}
\begin{definition}
\rm 如果$\lattice$上如果存在一个最小元素,则记为$0$. 类似地,如果$\lattice$存在一个最大元素,则记为$1$.
\end{definition}
\begin{definition}
\rm For a subset $A$ of a poset $\mathcal{P}$,let $A^u$ denote the set of all upper bounds of $A$,
$$
\begin{aligned}
A^u &= \Set{x \in P}{x \geq a\ \text{for all}\ a \in A} \\
&= \bigcap\limits_{a \in A} \uparrow a
\end{aligned}
$$
where $\uparrow a = \Set{x \in P}{x \geq a}$. Dually,$A^l$ is the set of all lower bounds of $A$,
$$
\begin{aligned}
A^l &= \Set{x \in P}{x \leq a\ \text{for all}\ a \in A} \\
&= \bigcap\limits_{a \in A} \downarrow a
\end{aligned}
$$
where $\downarrow a = \Set{x \in P}{x \leq a}$.
\end{definition}
思考一个问题{\color{red} poset $\mathcal{P}$的一个subset $A$什么时候有一个least upper bound}? 首先你得保证$A^u$不为空,那么这里可以设置一个条件“$\mathcal{P}$有一个maximum element”,显然此时$A^u$就天然不为空了. 再进一步思考,如果$A^u$存在一个greatest lower bound $z$,且$z \in A^u$,那么按照定义$z$就是$A$的least upper bound. 如果前面这样的$z$存在,那么我们the join of $A$存在,记为$z = \bigvee A$,这样对集合的join操作也被定义好了,集合的meet操作也是类似的.
\begin{theorem}\label{finite-semilattice-to-lattice}
\rm \redt{有限半格到格} Let $\slattice$ be a finite meet semilattice with greatest element 1. Then $\slattice$ is a lattice with join operation defined by
$$
x \vee y = \bigwedge \{x,y\} ^u = \bigwedge (\uparrow x \cap \uparrow y).
$$
\end{theorem}
\begin{proof}
由于$\slattice$是一个finite lattice,所以$A^u$也是finite. $A^u$里面的元素做有限次meet操作得到就是一个$A^u$的lower upper bound,但是你还得说明它在$A^u$里面,这是很显然的,因为$x \wedge z_1 \wedge \cdots \wedge z_k = x$其中$x \in A, z_i \in A^u$,所以$\bigwedge A^u$是它的一个upper bound.
还得proof一下它是一个lattice,上面只是证明了这个东西是well behaved. Lattcie definition中前三条还是比较明显的.
$$
x \wedge (x \vee y) = x
$$
这也很显然,因为$x \vee y \in \{x,y\}^u$.
$$
x \vee (x \wedge y) = x
$$
因为$x \wedge y$是$\{x,y\}$的一个greatest lower bound.
\end{proof}
这个theorem告诉我们: {\color{red} if a finite poset $P$ has a greatest element and every pair of elements has a meet,
then $P$ is a lattice}. 这就是lattice非代数形式的definition.
\begin{theorem}
\rm Every finite subset of a lattice has a greatest lower bound and a least upper bound.
\end{theorem}
\begin{proof}
$\lattice$是finite,则它的subset也是finite,两个确界的构造与\ref{finite-semilattice-to-lattice}一样.
\end{proof}
{\color{red} 这个性质在infinite lattice下可能就无法成立,自然地completely就arised}.
\begin{definition}
\rm Given poset $\lattice$. If every subset $A$ of $\lattice$ has a greatest lower bound $\bigwedge A$ and a least upper bound $\bigvee A$,then $\lattice$ is called {\color{red} complete lattice}.
\end{definition}
%{\color{red} finite lattice是complete的,并且所有complete lattice都包含greatest element和least element}.
\begin{definition}
\rm A {\color{red} complete meet semilattice} is an poset $\slattice$ with greatest element and the property that every nonempty subset $A$ of $S$ has a greatest lower bound $\bigwedge A$.
\end{definition}
%{\color{red} 下面这个theorem让我们抛弃了更强的finite,如何在complete meet semilattice上构造一个complete lattice出来}.
\begin{theorem}
\rm If $\lattice$ is a complete meet semilattice,then $\lattice$ is a complete lattice with the join operation defined by
$$
\bigvee A = \bigwedge A^u = \bigwedge (\bigcap\limits_{a \in A} \uparrow a).
$$
\end{theorem}
\begin{proof}
和前面在finite meet semilattice上构造lattice类似,这里finite换成了complete. 这里我们直接就可以知道在$A^u$非空时,$\bigwedge A^u$是有意义的,并且这里有$1 \in A^u$. 那么$\bigwedge A$的definition是满足$A$的least upper bound.
\end{proof}
\newpage
\subsection{Closure System}
{\color{blue} 这一章我们的主旋律,先给出closure system是什么? 再告诉你如何构造第一个closure system(closure rules)? 再告诉你如何在一个closure system上取一个合适的元素出来(closure operator)? 慢慢享受吧 )
\begin{center}
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZARgBoAGAXVJADcBDAGwFcYkQAdDnGADx2ABjRpmYAnGAAI4ATzg8AtgF8QS0uky58hFACZSxanSat2XHvyEi44qRDQwx9HBDEq1G7HgJFyBowwsbIic3HwCwqISkmLMjPDuRjBQAObwRKAAZmIQCkh+IC5IxB4g2blI+oUQ+aXleYhk1ZU0ABYw9FBIYHGMNDj0WIzskGBsSpRKQA
\begin{tikzcd}
& \text{closure system} \arrow[rd] & \\
\text{closure rules} \arrow[ru] & & \text{closure operator} \arrow[ll]
\end{tikzcd}
\end{center}
}
\begin{definition}
\rm A {\color{red} closure system} on a set $X$ is a collection $\mathcal{C}$ of subsets of $X$ thats is closed under arbitrary intersections(任意的交). The sets in $\mathcal{C}$ are called closed set.
\end{definition}
\begin{example}
\rm 有一些closure system的例子
\begin{enumerate}
\item closed subsets of topological space,
\item subgroups of group,
\item subspace of vector space.
\item convex subsets of euclidean space $\mathbb{R}^n$,
\item order ideals of an poset.
\end{enumerate}
\end{example}
By convention,特殊地\redt{$\bigcap \emptyset = X$} (but why),closure system现在就是complete meet semilattice with greatest element $X$,所以你按前面构造定义出join,那么closure system就是一个complete lattice了.
\begin{definition}
\rm A {\color{red} closure} operator on a set $X$ is a map $\func{\Gamma}{\mathfrak{P}(X)}{\mathfrak{P}(X)}$ satifying, for all $A,B \subseteq X$,
\begin{enumerate}
\item $A \subseteq \Gamma(A),$
\item $A \subseteq B$ implies $\Gamma(A) \subseteq \Gamma(B),$
\item $\Gamma(\Gamma(A)) = \Gamma(A).$
\end{enumerate}
\end{definition}
%{\color{blue} closure的general definition有点意思}. 简单地来说,就是(1)集合的闭包包含集合本身;(2)如果两个集合有包含关系,则它们的闭包也有相同的包含关系;(3)闭包的闭包是其本身.
{\color{red} 如何在$X$上利用已知的closure system构造一个closure operator}?
\begin{theorem}
\rm If $\mathcal{C}$ is a closure system on a set $X$,then the map $\func{\Gamma_{\mathcal{C}}}{\mathfrak{B}(X)}{\mathfrak{B}(X)}$ defined by
$$
\Gamma_{\mathcal{C}}(A) = \bigcap \Set{D \in \mathcal{C}}{A \subseteq D}
$$
is a closure operator. Moreover $\Gamma_{\mathcal{C}}(A)=A$ if and only if $A \in \mathcal{C}$
\end{theorem}
%{\color{red} 所有包含这个集合的closed set的交是这个集合的closure}. {\color{blue} 在topology里面closure是包含这个集合最小的closed set}.
\begin{definition}
\rm A set of {\color{red} closure rules} on a set $X$ is a collection $\sum$ of properties $\varphi(S)$ of subsets of $X$. where each $\varphi(S)$ has one of the forms
$$
x \in S
$$
or
$$
Y \subseteq S \Rightarrow z \in S
$$
with $x,z \in X$ and $Y \subseteq X$. A subset $D$ of $X$ is said to be closed with respect to these rules if $\varphi(D)$ is true for each $\varphi \in \sum$.
\end{definition}
{\color{blue} 你看到这里一定会感觉非常的困惑,抽象的closure rules到底是个啥东西? 如果给定了一个$S$,要想把它构造成一个closet set,那你就就要按照$\Sigma$里面规则,往里面加东西. $\Sigma$里面有两类规则,第一类就是告诉你closet set一定要包含一些元素,例如一个子群需要包含单位元,第二类就是告诉你如果存在了一些元素在$S$,那么另外一些元素也需要在$S$里面,例如$a,b$在某个子群里面,那么$a * b$也要在这个子群里面,这样就make sense了}.
\begin{example}
\rm 对应前面列举到的closure system.
\begin{enumerate}
\item In topological space, all rules $Y \subseteq S \Rightarrow z \in S$ where $z$ is an accumulation point of $Y$.
\item In subgroup, the rule $1 \in S$ and all rules
$$
\begin{aligned}
x \in S &\Rightarrow x^{-1} \in S
\{x,y\} \in S &\Rightarrow xy \in S
\end{aligned}
$$
\item In vector space,$0 \in S$ and all rules $\{x,y\} \subseteq S \Rightarrow ax + by \in S$ with $a,b$ scalars.
\end{enumerate}
\end{example}
\begin{theorem}
\rm {\color{red} If $\Gamma$ is a closure operator on a set $X$},$\sum_{\Gamma}$ be the set of (1)all rules where $c \in \Gamma(\emptyset)$,and (2)all rules
$$
Y \subseteq S \Rightarrow z \in S
$$
with $z \in \Gamma(Y)$. Then a set $D \subseteq X$ satisfies all the rules of $\sum_\Gamma$ if and only if $\Gamma(D) = D$.
\end{theorem}
\begin{proof}
给定一个closure operator $\Gamma$. 对任意的子集$A$,有$F(\emptyset) \subseteq \Gamma(A \cup \emptyset)$,因此一类条件所含的固定元素应该是$F(\emptyset)$. 参照前面第一类条件,那么第二类条件我们就可以考虑$S$所有子集,对任意子集$Y \subseteq S$都要有$\Gamma(Y) \subseteq \Gamma(S)$.
我可以来简单验证一下,若$\Gamma(D) = D$,$D$满足上述条件是显然的. 反过来若$D$满足上述条件,那么$D \subseteq D$,因此$\Gamma(D) \subseteq D$,再有$\Gamma$第一个条性质又有$D \subseteq \Gamma(D)$,那么$\Gamma(D) = D$.
\end{proof}
{\color{blue} 当有一个closure operator之后,最重要是我们知道了closed set在它的作用下是它本身}.
\begin{theorem}
\rm {\color{red} If $\sum$ is a set of closure rules on set $X$},let $\mathcal{C}_{\sum}$ be the collection all subsets of $X$ that satisfy all the rules of $\sum$. Then a set $\mathcal{C}_{\sum}$ is a closure system.
\end{theorem}
\begin{proof}
这个定理可以更形象地去理解closure rule到底是什么? 假设$A,B$是满足$\sum$里面所有rules的两个集合. 我们看它们的交,对于第一类规则$x \in S$,很显然在交下是保持的,因为$x \in A$和$x \in B$,则$x \in A \cap B$. 对于第二类的规则,若$C \subseteq A \cap B$,且它是某个规则里面对应的$Y$,那么$C \subseteq A$和$C \subseteq B$,对应地有某个$z \in A$和$z \in B$,所以$z \in A\cap B$. 综上$A \cap B$也是属于$\mathcal{C}_{\sum}$.
\end{proof}
{\color{blue} 在这里我们才终于认识到这样closure rules这样抽象的东西,它确实可以刻画一堆closed set组成了一个closure system}.
{\color{red} 总结一下前面的所有东西. 我们前面3个定理就是在说明它们之前是可以相互转换的,例如给定一个closure operator,它$\Gamma(D) = D$可以对应上closure rules,然后我们用closure rules刻画的sets收集起来,这些sets在交运算下也能保持封闭,所以这些sets是一个closure system}. {\color{blue} 后面我们用$\mathcal{C}_\Gamma$ 表示由closure operator $\Gamma$ 生成的closed sets($\Gamma(D)=D$) with set inclusion 构成poset}. 下面是用closure system来刻画complete lattice.
\begin{theorem}
\rm If $\Gamma$ is a closure operator on a set $X$,and {\color{red} the operations on $\mathcal{C}_\Gamma$} are given by
$$
\begin{aligned}
\bigwedge\limits_{i \in I} D_i &= \bigcap\limits_{i \in I} D_i \\
\bigvee\limits_{i \in I} D_i &= \Gamma(\bigcup\limits_{i \in I} D_i).
\end{aligned}
$$
in where $D_i \in \mathcal{C}_{\Gamma}$. Then $\mathcal{C}_\Gamma$ is complete lattice.
\end{theorem}
\begin{proof}
在closure system上操作closet set,$\bigwedge\limits_{i \in I} D_i = \bigcap\limits_{i \in I} D_i$是显然合理的. 对于union $\bigcup\limits_{i \in I} D_i$,它肯定是$X$上$\{D_i\}$的greatest upper bound,但是它不一定在$\mathcal{C}_{\Gamma}$中,所以我们要在$\mathcal{C}_{\Gamma}$中找所有包含它的closed sets,再交一下就可以得到$\mathcal{C}_{\Gamma}$上的greatest upper bound. 这是我们的思路,假设这样的closed sets为$\{A_j\}_{i \in J}$. 明显地,$\bigcup\limits_{i \in I} D_i \subseteq \bigcap \{A_j\}_{i \in J}$. 我们只要证明$\Gamma(\bigcup\limits_{i \in I} D_i) \subseteq A_j$对任意地$j \in J$都成立即可,即它是$\mathcal{C}_{\Gamma}$包含$\bigcup\limits_{i \in I} D_i$最小的closed set. 但是证明过于简单2333,直接用closure operator第二个定义即可. 因为$\bigcup\limits_{i \in I} D_i \subseteq A_j$,所以$\Gamma(\bigcup\limits_{i \in I} D_i) \subseteq \Gamma(A_j) \subseteq A_j$.
\end{proof}
略{\color{red} algebra一般定义和subalgebra上的closure operator}.
下面是一个{\color{red} representation theorem,刚才是closure operator 到 complete lattice,现在是complete lattice到 closuse}.
{\color{blue} 下面的定理在说任意一个complete lattice和一些closed set构成lattice同构}.
\begin{theorem}
\rm If $\lattice$ is a complete lattice,define a closure operator $\Delta$ on $L$ by
$$
\Delta(A) = \Set{x \in L}{x \leq \bigvee A}.
$$
Then {\color{red} $\lattice$ is isomorphic to $\mathcal{C}_{\Delta}$}. The isomorphism $\func{\varphi}{\lattice}{\mathcal{C}_{\Delta}}$ is just given by $\varphi(x) = \downarrow x$.
\end{theorem}
\begin{proof}
$\Delta$是一个closure operator还是比较obvious. 我们来回顾一下$\downarrow x$的definition $\downarrow x = \Set{y \in L}{ y \leq x}$,所以$\Delta(\downarrow x) = \downarrow x \in \mathcal{C}_{\Delta}$.
先证bijective,若对于$x,y \in L$有$\varphi(x) = \varphi(y)$,那么$y \in \varphi(x)$和$x \in \varphi(y)$,就有$y \leq x$和$x \leq y$,所以$x = y$,即$\varphi$是injective. 任意一个$C \in \mathcal{C}_{\Delta}$,那么都有least upper bound $u \in C$. 自然地$\varphi(u) = C$,即$\varphi$是surjective.
给定任意地$x,y \in L$,那么
$$
\varphi(x \wedge y) = \uparrow (x \wedge y) = \uparrow x \cap \uparrow y = \varphi(x) \wedge \varphi(y).
$$
同理
$$
\varphi(x \vee y) = \uparrow (x \vee y) = \uparrow x \cap \uparrow y = \varphi(x) \vee \varphi(y).
$$
综上$\varphi$是一个isomorphism.
\end{proof}
{\color{blue} 换句话说就是$q$如果是join irreducible,则它不可能是其他某些元素的一个join}.
\begin{definition}
\rm An element $q$ of lattice $\lattice$ is called {\color{red} join irreducible} if $q = \bigvee F$ for a {\color{red} finite set} $F$ implies $q \in F$. The set of all join irreducible elements in $\lattice$ is denoted by $J(\lattice)$.
\begin{center}
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZARgBoAGAXVJADcBDAGwFcYkR6QBfU9TXfIRTlSxanSat2AI268QGbHgJEATKPEMWbRCADGcvksFEALBU2SdHQwv7Khyc2Jpapu2TyMCVKc6sttdgMucRgoAHN4IlAAMwAnCABbJBEQHAgkMhAACxh6KCQwZkZGLxAE5NSaDKRVcsqUxABmGszEUwbEpvN09oBWUK4gA
\begin{tikzcd}
& a \arrow[ld] \arrow[rd] & & & a \arrow[d] \\
b & & c & & b \arrow[d] \\
& & & & c
\end{tikzcd}
\end{center}
左边$a$不是join irreducible,因为$a = \bigvee\{b,c\}$.
\end{definition}
{\color{red} 如果$\lattice$有一个最小元素0,那么0其实不是join irreducible的,因为$0 = \bigvee \emptyset$. 如果想要把0含进来,特殊地$J_0(\lattice) =J(\lattice) \cap \{0\}$. 当然还有一种定义如果$q$是join irreducible,那么当$q = r \vee s$,则$q = r$或者$q =s$,在这种定义下$q$已经是针对非空的集合来说的}.
\begin{lemma}
\rm If a lattice $\lattice$ satisfies the DCC,then every element of $\lattice$ is a join of finitely many join irreducible elements.
\end{lemma}
\begin{proof}
用反证法来证明: 假设存在$\lattice$上一些元素,使得找不到join irreducible elements的join正好是它们. 我们把这些元素记为集合$S$,因为$\lattice$满足DDC,那么$S$里面有一个最小值,我们设为$x$. 那么$x$本身也肯定不是join irreducible的(不然它可以join自己),因此有$x = \bigvee F$其中$F$是一个finite set且里面的元素都是严格小于$x$的,由于$x$是最小元素这个概念,所以比它小的元素都是the join of finitely many join irreducible elements. 那么对于$F$而言,任意的$f \in F$都有一个$G_f \subseteq J(\lattice)$的join是$f$. 所以
$$
x = \bigvee\limits_{f \in F}\bigvee G_f.
$$
这里$f = \bigvee G_f$,这里也是有限次地join,所以$x$可以表示成有限多个join irreducible elements的join,这就矛盾了. 这里应该还要考虑一下$x = 0$,但是讨论0确实没什么意义,0可以定义为join irreducible也可以不是,这里还是避免这种情况吧...
\end{proof}
\begin{definition}
\rm An element $q$ of a complete lattice $\lattice$ is said to be {\color{red} completely join irreducible} if $q = \bigvee X$ implies $q \in X$ for {\color{red} arbitrary (possibly infinite) subsets} $X \subseteq L$. Let $J^*(\lattice)$ denote the set of all completely join irreducible elements of $\lattice$.
\end{definition}
\begin{proposition}
\rm In general,$J^{*}(L) \subseteq J(L)$,but for lattices satisfying the ACC,equality holds.
\end{proposition}
\begin{proof}
每个completely join irreducible element肯定是 join irreducible element. 这是很自然地,它是任意多个元素的join,那肯定可以挑出来有限多个元素 with $q$的join还是$q$. ACC有了之后,$\lattice$上任意非空的子集都有一个最大元素,那么我们现在假设一个join irreducible element $x$它不是complete的,即可以找到某个集合$S$,有$x = \bigvee S$且$x \notin S$. 矛盾就来了,ACC下least upper bound应该是在$S$里面,所以现在又有每个join irreducible element是completely join irreducible.
\end{proof}
{\color{blue} 满足ACC和DCC的lattice一个表示方法}.
\begin{theorem}
\rm Let $\lattice$ be a lattice satisfying the ACC and DCC. Let $\sum$ be the set of all closure rules on $J(L)$ of the form
$$
F \subseteq S \Rightarrow q \in S
$$
where $q$ is join irreducible,$F$ is a finite subset of $J(L)$,and $q \leq \bigvee F$. (Include the degenerate cases $p \in S \Rightarrow q \in S$ for $q \leq p$ in $J(\lattice)$.) Then $\lattice$ is isomorphic to the lattice of $\mathcal{C}_{\sum}$ of $\sum$-closed sets.
\end{theorem}
\begin{proof}
这里同构证明用isomorphism definition下面那个定律,即bijective加两个order-preserving. 那么先给出两个order-preserving的map $\func{f}{\lattice}{\mathcal{C}_{\sum}}$和$\func{g}{\mathcal{C}_{\sum}}{\lattice}$
$$
\begin{aligned}
f(x) &= \downarrow x \cap J(\lattice)\\
g(S) &= \bigvee S.
\end{aligned}
$$
需要证明它们两个互为逆映射(感觉好突兀啊,虽然原文中说straightforwrad233333). 那么对于$gf(x) = x$,前面那个lemma应该告诉我们了,在DCC下$\lattice$每一个元素都是a join of finitely many join irreducible elements对应是$f(x)$的操作.
那么对于$fg(S) = S$,在ACC下$\bigvee S \in S$,也就是我们可以找到一些finite set $F \subseteq S$使得$\bigvee F = \bigvee S$,按照closure rules,所有join irreducible $q \leq \bigvee F$都是属于$S$的,$f(\bigvee F)$就是在做这件事. 但是这样得到是不是全部的$S$呢? 考虑其他finite set $F'$, 那么$\bigvee F' \leq \bigvee S = \bigvee F$,$f$是order-preserving的,所以有$f(\bigvee F') \subseteq f(\bigvee F)$,所以$f(\bigvee F)$涵盖了整个$S$.
\end{proof}
{\color{blue} 按照下面定义$x$明显是一个upper bound,但是条件更强它还要是一个least upper bound,dense 稠密在这里还是很形象,$x$就是一个划分}.
\begin{definition}
\rm A subset $Q$ of a complete lattice $\lattice$ is {\color{red} join dense} if for every $x \in L,$
$$
x = \bigvee\Set{q \in Q}{q \leq x}.
$$
\end{definition}
{\color{blue} fixed point来表征complete lattice}.
\begin{theorem}
\rm \redt{Knaster–Tarski theorem} A lattice $\lattice$ is complete of if and only if every order-preserving map $\func{f}{\lattice}{\lattice}$ has a fixed point.
\end{theorem}
\begin{proof}
($\Rightarrow$) 如果给定一个 complete lattice $\lattice$和一个order-preserving map $\func{f}{\lattice}{\lattice}$. 定义集合$A = \Set{x \in L}{f(x) \geq x}$. 注意到$0 \in A$ (0表示minimal element of $L$). 令$u = \bigvee A$,那么对于任意的$x \in A$都有$u \geq x$,结合$f$是order-preserving我们有
$$
x \leq f(x) \leq f(u)
$$
因此$f(u)$是$A$的一个upper bound,而$u$是$A$的least upper bound,从而有
$$
u \leq f(u)
$$
因此$u \in A$. 由于$f$是monotone,对于任意的$x \in A$有
$$
f(x) \leq f(f(x)),
$$
因此$f(x) \in A$,那么$f(u) \leq A$,从而$f(u) \leq u$,最终可以得到$f(u) = u$. $A$包含了所有fixpoint,按照定义$f(u)$是greatest fixpoint.
($\Leftarrow$) 这个方向的证明略微有些复杂,{\color{blue} 故事主线是在every order-preserving map has a fixed point的前提下,假设$\lattice$不是complete,然后构造出来出来一个order-preserving map没有fixed point造成矛盾}.
假设$\lattice$不是complete,那么先给出第一个claim.
\textbf{Claim 1}: $\lattice$没有最大元素1或者存在一个chain $C \subseteq L$满足ACC且没有meet(supermum).
证这个claim,我们还是用反证法,{\color{blue} 假设$\lattice$有最大元素1和所有满足ACC的chain $C \subseteq L$都有meet}. 我们仔细考虑一下这个假设,先回顾一下我们前面关于complete meet semilattice的definition,是要有一个poset满足有greatest element并且所有非空的子集都有meet,然后我们可以通过这个complete meet semilattice构造出来一个complete lattice,我们的证明大体上也是这个思路,但是使用其对偶的形式(因为你可以观察到我们假设的第二个条件有些不一样),即在complete join semilattice来构造,从而制造了一个contradiction.
考虑某个子集$S$的所有upper bound $S^u$. {\color{blue} 注意到$1 \in S^u$},所以$S^u$不是emptyset. 我们再来定义一个poset $\mathcal{P}$,它是$S^u$上所有满足ACC的chains的一个collections. $\mathcal{P}$上的partial-order定义为若$C_1 \leq C_2$则$C_1$是$C_2$的一个filter(我们回顾一下filter的定义,它是ideal的对偶形式,即首先有$C_1 \subseteq C_2$,若$x \geq y \in C_1$则$x \in C_1$其中$x \in C_2$).
我们再来考虑这个特殊的poset $\mathcal{P}$上的chain (chain of chains),任取$\mathcal{P}$上的一个chain $\{C_i\}_{i \in I}$,那么$\bigcup\limits_{i \in I} C_i \in \mathcal{P}$,根据上面定义的partial order这是显然的,而且$\bigcup\limits_{i \in I} C_i$它是这个chain的一个upper bound. 根据Zorn's lemma,$\mathcal{P}$上有一个maximal element $C_m$. {\color{blue} 根据我们的假设$C_m$满足ACC是有meet的},这个meet我们用$a$来表示,即$\bigwedge C_m = a$. 很明显$a$在是$S$的一个upper bound,所以$a \in S^u$. {\color{blue} 我们现在来证明$a = \bigwedge S^u$}(至于为什么后面你就知道了),还是用反证法(23333),假设$a$不是$S^u$的greatest lower bound,那么存在$t \in S^u$,使得$a \nleq t$. 则有$a \wedge t \in S^u$,为什么呢?因为任取$s \in S$,都有$s \wedge (a \wedge t) = s$. 自然地$a > a \wedge t$(严格大于没有等号),那么chain $C_m \cup \{a \wedge t\}$也是满足ACC,且大于$C_m$,这就矛盾了,所以$a = \bigwedge S^u = \bigvee S$.
所以我们证明了对于任意的$S \subseteq L$都有join,那么马上我们有
$$
\bigwedge S = \bigvee S^l.
$$
所以$S$的meet也有意义了,但是这里$S^l$我们不知道是不是非空的啊? 注意最前面我们用0加上complete join semilattice来构造complete lattice,但是我们这里不需要构造因为lattice是给定了,那么对于任意非空的$S$,$\bigwedge S \in S^l$的,所以$S^l$也是非空的,这里没有问题. 综上$\lattice$是一个complete lattice与前提矛盾. \textbf{Claim 1}证闭.
原谅我这个证明写不去了,原文省略太多的东西了...
\end{proof}
{\color{red} 来另一个1955年给出的第一个证明}.
\begin{lemma}
\rm 如果$\lattice$是incomplete,那么存在两个chain $C$和$D$满足下面条件,
\begin{enumerate}
\item $C$是一个strictly ascending chain(严格大于),$D$是一个strictly descending chain(严格小于).
\item $D$中的每个元素都严格大于$C$中的每个元素.
\item 不存在$a \in L$使得它同时是$C$的upper bound和$D$的lower bound.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of above lemma.
\end{proof}
\begin{proof}
这里我们还是证if every preserving map $\func{f}{\lattice}{\lattice}$ has a fixed point then $\lattice$ is complete. 还是假设$\lattice$是incomplete,然后我们构造一个preserving map没有fixed point.
假设$C,D$是满足前面lemma的两个chains. 然后我们来定义这个特殊的preserving map $f$,对于任意的$x \in \lattice$,我们可以分两种情况来看,{\color{blue} $x$是$D$的lower upper或者不是}.
第一种情况若$x$是$D$的lower upper,反过来那么它肯定不是$C$的upper bound,那么肯定存在某些$c \in C$满足$c \nleq x$. 我们把这些$c$记为
$$
C(x) = \Set{c \in C}{c \nleq x}.
$$
这种情况下我们取$f(x) = \min C(x)$,即$C(x)$中的最小值.
第二种情况$x$不是$D$的lower upper,那么肯定存在某些$d \ D$满足$c \ngeq x$. 我们把这些$d$记为
$$
D(x) = \Set{d \in D}{d \ngeq x}.
$$
这种情况下我们取$f(x) = \max D(x)$,即$D(x)$中的最大值.
这种情况定义出来的$f(x)$都会满足$f(x) \ngeq x$或者$f(x) \nleq x$,所以是不存在$f(x) = x$,即没有fixed point的.
接下来我们证明$f$是一个preserving map,取$x \leq y$. 我们分下面几种情况来分别说明:
\begin{enumerate}
\item $x$是$D$的lower bound,$y$是$D$的lower bound. 那么$f(x) = \min C(x)$和$f(y) = \min C(y)$. 若$y \ngeq c$,则$ x \ngeq c$ (else $y \geq x \geq c$),所以$C(y) \subseteq C(x)$.
\begin{center}
\begin{tikzpicture}
\fill (0,0) circle (2pt) node[above left](a) {};
\fill (0,-1) circle (2pt) node[above left](b) {};
\fill (0,-2) circle (2pt) node[above left] {};
\fill (0,-3) circle (2pt) node[above left] {};
\fill (0,-4) circle (2pt) node[above left] {};
\fill (0,-5) circle (2pt) node[above left] {};
\fill (0,-6) circle (2pt) node[above left] {};
\fill (1,-3) circle (2pt) node[above left] {x};
\fill (1,-2) circle (2pt) node[above left] {y};
\draw[->,thick] (0,-6+0.1) to [bend right] (0,-5-0.1);
\draw[->,thick] (0,-5+0.1) to [bend right] (0,-4-0.1);
\draw[->,thick] (0,-4+0.1) to [bend right] (0,-3-0.1);
\draw[->,thick] (0,-3+0.1) to [bend right] (0,-2-0.1);
\draw[->,thick] (0,-2+0.1) to [bend right] (0,-1-0.1);
\draw[->,thick] (0,-0.9) to [bend right] (0,-0.1);
\draw[thick] (1,-3) -- (1,-2);
\draw[dashed] (1,-3) -- (0,-4);
\end{tikzpicture}
\end{center}
$C$是一个升链,那么$C(x)$可以想象成这条链上一堆点,那么$C(x)$还是一个升链,$C(y)$是它的一个子集必然满足$\min C(x) \leq \min C(y)$,则$f(x) \leq f(y)$.
\item $x$是$D$的lower bound,$y$不是$D$的lower bound. 那么$f(x) = \min C(x)$和$f(y) = \max D(y)$,显然$f(x) \leq f(y)$.
\item $x$不是$D$的lower bound,$y$是$D$的lower bound. 这是不可能的,因为$x \leq y$,那么当$y$是$D$的lower bound的时候,$x$也是$D$的lower bound.
\item $x$不是$D$的lower bound,$y$不是$D$的lower bound. 那么$f(x) = \max D(x)$和$f(y) = \max D(y)$. 若$x \nleq d$,则$y \nleq d$ (else $x \leq y \leq d$). 所以$D(x) \subseteq D(y)$. 由于$D(y)$是一个降链上点的集合,这个集合还是一个降链,你在降链上找子集$D(x)$,肯定有$\max D(x) \leq \max D(y)$,则$f(x) \leq f(y)$.
\end{enumerate}
综上$f(x) \leq f(y)$总是成立,所以$f$确实是一个preserving map.
\end{proof}
%https://core.ac.uk/download/pdf/4886291.pdf complete lattice上的endomorphim monotone map不动点构成集合是还是一个complete lattice.
\newpage
\section{Alegbraic Lattices}
\subsection{Algebraic Closure Operators}
\def\temp{&} \catcode`&=\active \let&=\temp
% https://tikzcd.yichuanshen.de/#N4Igdg9gJgpgziAXAbVABwnAlgFyxMJZABgBpiBdUkANwEMAbAVxiRAB12cYAPHYAMYNMTAE4wABBDQxRdHBFEBfEEtLpMufIRQAWclVqMWbTtz7BGAcxgAjOVgEShI8VJlyFy1epAZseAREZADMhvTMrIgcXLz8AhAAtmgMMNwSDPJ4AjAqahoB2kT6YdQRJtFmcZYMNvZ0jhlZjrk+BVpBKGQAbOHGUTHm-DgAFpKZONmSEABmzsJwMFASizh5vv4dOsj6vWX9prEWo+PNOVJzLovLq3mGSzYIKKAzoklIZCAKSABM+5GHWwwKxYMCWURyACeSmADAYSk4AHE6IlEnQABQAQQAlBJOAB3B6SJEotHogBCuIkADIALwSPHsZGojE4xkCOhoRnMsmUxmcbmk1m4zg0GDEplCilUumCllY9lMLmUzgwMBQcFQlTUTJAhgABU0gR0IFEWCsIxwbRAr3eiE+30QAEZ-hUYjzhRJ6ZxbOaBEq5WSAGK4kA6uh6w2FTogVIzK35G1vRJIF1fCBIEKugY+4GgzV0aGw+Ek+VsglEwMYvmyqtYkXsDlc0u8hsClue0Xius172SsuK5XY1XqgvQsOxiMwA1GorROMJ3y2lOIP7ppD6IwAypHfhYWCMeauaYeeSKdHWOwOAS42x0a5SMASAAknDRow5DGAABklM-tZOkazjGZoWouLzJr81COlmW5ulUxxjCsaQXM4SRoHQAg4BI04wIkao4HAEhYERABWECghIsBgIsAG6tOUZbGwC7WsumbQRmiAAKzZocQzAPuMCHlcYgnrIZ6iBetRXg0N4SHeD4EC+b7yCMn4-koAB6Aj-hO9EztGJosYmbGIJujo8XBOb9mSbJ9r6Vj+s2NkYiGEh6VOBlMdEoGWqoFBKEAA
\begin{center}
\begin{tikzcd}
\text{closure operator} \arrow[ddd, "\begin{array}{ll}\Gamma(A) \wedge \Gamma(B) &= \Gamma(A) \cap \Gamma(B) \\ \Gamma(A) \vee \Gamma(B) &= \Gamma(A \cup B)\end{array}"'] \arrow[rrrr, "\Gamma(A) = \bigcup \Gamma(F) "] & & & & \text{algebraic closure operator} \arrow[ddd, "\begin{array}{ll}\Gamma(A) \wedge \Gamma(B) &= \Gamma(A) \cap \Gamma(B) \\ \Gamma(A) \vee \Gamma(B) &= \Gamma(A \cup B)\end{array}"] \\
& & & & \\
& & & & \\
\text{complete lattice} \arrow[ddd, "\text{ideal closure operator(algebraic) based on $\mathcal{L}$}"'] \arrow[rrrr, "\text{the set of compact elements is join dense}"] & & & & \text{algebraic lattice} \arrow[ddd, "\text{ideal closure operator(algebraic) based on $\mathcal{L}^c$}"] \\
& & & & \\
& & & & \\
\text{the lattice of closed set} \arrow[rrrr, "\Gamma(A) = \bigcup \Gamma(F) "'] & & & & \text{the lattice of closed set}
\end{tikzcd}
\end{center}
\begin{definition}
\rm A {\color{red} closure operator} $\Gamma$ on a set $X$ is said to be {\color{red} algebraic} if for every $B \subseteq X$,
$$
\Gamma(B) = \bigcup \SET{\Gamma(F)}{$F$ is finite subset of $X$}.
$$
\end{definition}
\begin{definition}
\rm Let $\lattice$ be a complete lattice. An element $x \in L$ is {\color{red} compact} if whenever $x \leq \bigvee A$, then there exists a finite subset $F \subseteq A$ such that $x \leq \bigvee F$. The set of all compact elements of $\lattice$ is denoted by $\lattice^c$
\end{definition}
{\color{blue} 这里的compact就是在说如果$x$小于$A$,则$x$小于$A$中的部分元素. 这个定义看起来还是比较自然的}.
\begin{proposition}
\rm $\lattice^c$ is closed under finite joins and contains 0,so it is a join semilattice with a least element.
\end{proposition}
\begin{proof}
假设$x$和$y$是两个compact元素,集合$A$表示such $x \vee y \leq A$. 那么自然地有$x \leq x \vee y \leq A $和$y \leq x \vee y \leq A$,所以各自都可以找到$x \leq F_x \subseteq A$和$y \leq F_y \subseteq A$. 从$F_x$和$F_y$各挑一个元素出来$a$和$b$出来,那么$x\vee y \leq a\vee b$. 0属于$\lattice^c$这是很自然的,它比任何一个元素都小.
\end{proof}
\begin{definition}
\rm A lattice $\lattice$ is said to be {\color{red} algebraic, or compactly generated}, if it is complete and $\lattice^c$ is join dense in $\lattice$, i.e., $x = \bigvee (\downarrow x \cap L^c)$ for every $x \in L$.
\end{definition}
{\color{blue} 换句话说就是在$\lattice^c$中比$x$小的元素它们的join是$x$,每一个$x$都可以划分$\lattice^c$. 另外一个理解就是任意$x \in L$,都是某些compact elements的join,这就是为什么说compactly generated}.
\begin{example}
\rm 自然地,finite lattice都是algebraic lattice, 首先finite lattice是complete lattice,其中每一个元素都是compact,所以有$\lattice = \lattice ^c$,那么$x = \bigvee (\downarrow x \cap L) = \bigvee (\downarrow x) = x$,即$\lattice$是join dense的.
\end{example}
\begin{example}
\rm 一个complete lattice并一定是一个algebraic lattice:
\begin{enumerate}
\item 区间$[0,1]$上所有的实数在自然序构成一个complete lattice $\mathcal{K}$,那么$\mathcal{K}^c = {0}$,但是它并不是join dense的.
\item 下面的Hasse图也是complete lattice,但是$z$并不是一些complete element的join,那么$\lattice ^c$就不是join dense的.
\begin{center}
\begin{tikzpicture}
\usetikzlibrary{positioning}
\tikzset{mynode/.style={draw,circle,inner sep=1.5pt,outer sep=0pt}
}
\node [mynode,label=above:{$z$}] (z) at (0,0) {};
\node [mynode] (a) at (2,2) {};
\node [draw,circle,fill,inner sep=0.5pt] (dd) at (2.7,0.94) {};
\node [draw,circle,fill,inner sep=0.5pt] (dd) at (2.5,1.26) {};
\node [draw,circle,fill,inner sep=0.5pt] (dd) at (2.3,1.6) {};
\node [mynode] (b) at (2.9,0.6) {};
\node [mynode] (c) at (3,0) {};
\node [mynode] (d) at (2.9,-0.68) {};
\node [mynode] (e) at (2.7,-1.36) {};
\node [mynode] (f) at (2,-2) {};
\draw (z) -- (a)
(b) -- (c)
(c) -- (d)
(d) -- (e)
(z) -- (f)
(e) -- (f);
\end{tikzpicture}
\end{center}
\end{enumerate}
\begin{definition}
\rm A closure rule is said to be {\color{red} finitary} if it is a rule of the form $x \in S$ or the form $F \subseteq S \Rightarrow z \in S$ with $F$ a finite set.
\end{definition}
\begin{theorem}
\rm {\color{red} (algebraic和finitary的关系)} A closure operator $\Gamma$ is algebraic if and only if $\Gamma = \Gamma_{\sum}$ for some set $\sum$ of finitary closure rules.
\end{theorem}
\begin{proof}
若$\Gamma$是一个$X$上的algebraic closure operator,我们要构造一组finitary closure rules来描述它的closed sets. 那么我们规定 {\color{red} 若$S \subseteq X$是closed 当且仅当对任意的finite set $F \subseteq S$都有$\Gamma(F) \subseteq S$}. 我们再来证明这个断言的正确性,正向是比较明显的,反过来要证明$S$是一个closet set即$\Gamma(S) = S$,在$\Gamma$的作用下,已经有$S \subseteq \Gamma(S)$,所以我们只需要证明$\Gamma(S) \subseteq S$. 因为$\Gamma$是algebraic的,所以对于finite set $F \subseteq S$,有$\Gamma(S) = \bigcup \Gamma(F)$,结合前提有$\bigcup \Gamma(F) \subseteq S$,那么$\Gamma(S) \subseteq S$. 我们由已经证明的结论构造出一族closure rules它们是finitary: 对任意的finite set $F \subseteq S \Rightarrow z \in S$其中$z \in \Gamma(F)$. 这族closure rules对应的closed set就是$\Gamma$上所决定的.
前面命题的正向是在描述一个represention,那么反过来$\Gamma_{\sum}$到底在这里是什么意思呢?在确定closure rules情况下,我们就确定了$X$上的closed sets,随即它们构成了一个closure system,在之前closure system那一章,我们已经证明了,那么我们再在这个closure system上构造一个closure operator $\Gamma_{\sum}$定义如下
$$
\Gamma_{\sum}(A) = \bigcap \Set{S \in \mathcal{C}_{\sum}}{ A \subseteq S}
$$
其中$\mathcal{C}_{\sum}$表示closure rules确定的closed set. 是不是感觉绕了一个大湾?哈哈. whatever its done!
反过来如果$\sum$是一族finitary closure rules,可以得到上述定义的closure operator $\Gamma_{\sum}$,现在我们要来说明它是algebraic. 你得证明$\Gamma_{\sum}(B)$是$B$靠着closure rules生成的. 这里的证明去看universe alegbra中证明$\text{Sg}$是一个algebraic closure operator的方法.
\end{proof}
\newpage
\begin{theorem}
\rm {\color{red} (在algebraic closure operator上构造algebraic lattice)} Let $\Gamma$ be an algebraic closure operator on set $X$. Then $\mathcal{C}_\Gamma$ is an algebraic lattice whose compact elements are $\SET{\Gamma(F)}{$F$ is a finite subset of $X$}$.
\end{theorem}
\begin{proof}
首先我们得说明$\mathcal{C}_\Gamma$是一个complete lattice. 给定一族$\mathcal{C}_\Gamma$上的元素$B_{i \in I}$,我们定义$\bigvee\limits_{i \in I} B_i = \Gamma(\bigcup\limits_{i \in I} B_i)$和$\bigwedge_{i \in I} B_i = \Gamma(\bigcap_{i \in I} B_i)$,其中最大元是$\Gamma(X)$和最小元是$\Gamma(\emptyset)$. 所以$\mathcal{C}_{\Gamma}$是一个complete lattice.
给定$X$上的有限子集$F$和$X$上子集族$A_{i \in I}$. 若$\Gamma(F) \leq \bigvee\limits_{i\in I}\Gamma(A_i) = \Gamma(\bigcup\limits_{i\in I} A_i)$,要{\color{red} 证明$\Gamma(F)$是compact的,就是要证明$\Gamma(F) \subseteq \bigvee\limits_{j \in J} \Gamma(A_j)$其中$J$是有限的且$J \subseteq I$}.
由于$\Gamma$是algebraic的,那么
$$
F \subseteq \Gamma(F) \subseteq \Gamma(\bigcup\limits_{i\in I} A_i) = \bigcup\SET{\Gamma(G)}{$G$ is finite subset of $\bigcup\limits_{i\in I} A_i$}.
$$
对于任意的$x \in F$,都存在$x \in \Gamma(G_x)$,那么
$$
\Gamma(F) \subseteq \Gamma(\bigcup\limits_{x \in F}\Gamma(G_x)).
$$
实际上若$G$是$\bigcup\limits_{i\in I} A_i$的有限子集,那么$G \subseteq \bigcup\limits_{j\in J} A_j$,所以
$$
\Gamma(F) \subseteq \Gamma(\bigcup\limits_{x \in F}\Gamma(G_x)) \subseteq \Gamma(\bigcup\limits_{x \in F} \Gamma(\bigcup\limits_{j\in J_x} A_j)) = \bigvee\limits_{x \in F} \bigvee\limits_{j\in J_x} \Gamma(A_j) = \bigvee\limits_{\begin{aligned} x &\in F \\ j &\in J_x \end{aligned}} \Gamma(A_j).
$$
反过来,若$C$是$\mathcal{C}_{\Gamma}$上的compact element. {\color{red}我们要证明$C$是$X$上某个有限子集的闭包}. 因为$C$是closed的,则$\Gamma(C) = C$. 再由$\Gamma$是algebraic的,那么$C = \bigcup\SET{\Gamma(F)}{$F$ is finite subset of $C$}$. 又因为$C$是compact的,所以存在有限多个$\Gamma(F_1),\cdots,\Gamma(F_n)$使得$C = \Gamma(F_1) \vee \cdots \vee \Gamma(F_n) = \Gamma(F_1 \cup \cdots \cup F_n).$命题得证.
{\color{red} 最后证明$\mathcal{C}_{\Gamma}^c$是join dense的}. 对于任意的$B \in \mathcal{C}_{\Gamma}$,$B$是closed,那么$B = \bigvee\limits_{i \in I} \Gamma(F_i)$其中finite subset $F \subseteq B$ (这里已经可以说明$B$是compactly generated). 自然地有$\bigvee(\downarrow B \cap \mathcal{C}_{\Gamma}^c) \leq A$且$\Gamma(F_i)_{i \in I} \in \mathcal{C}_{\Gamma}^c$,那么$\bigvee(\downarrow B \cap \mathcal{C}_{\Gamma}^c) = B$. 命题得证.
\color{blue} 我们用algebraic closure operator生成了一个algebraic lattice,其上每一个元素都是compact elements的join,自然地联想到closure operator是algebraic的那个条件,每一个closed set都可以用finitely generated closed set来表示.
\end{proof}
\begin{definition}
\rm If $\Gamma$ is a closure operator on $X$ and $B$ is closed subset of $X$, then we way a set $A$ is a {\color{red} generating set} for $B$ if $\Gamma(A) = B$. The Set $B$ is {\color{red} finitely generated} if there is a finite generating set for $B$. The set $A$ is {\color{red} minimal generating set} for $B$ if $A$ generates $B$ and no proper subset of $A$ generates $B$.
\end{definition}
\begin{corollary}
\rm Let $\Gamma$ be an algebraic closure operator on $X$. Then the finitely generated subset of $X$ are precisely the compact elements of $\mathcal{C}_{\Gamma}$.
\end{corollary}
\begin{example}
\rm 若$\mathcal{C}_{\Gamma}$是algebraic的,则$\Gamma$不一定是algebraic,也就是说$\Gamma$生成的lattice 是algebraic的,但是$\Gamma$本身不一定是algebraic. 下面举一个列子.
例如定义$X = Y \cup \{b\}$其中$Y$是finite set,$X$表示为它们的disjoint union(不交并). 然后定义$X$上的closure operator $\Gamma$为: 若$A$是$Y$的一个proper set(真子集),则$\Gamma(A) = A$; 特别地$\Gamma(Y) = X$; 若$b \in B \subseteq X$,则$\Gamma(B) = X$. $\Gamma$一个well defined closure operator,可以验证一下. 那么$\Gamma$生成的closed set为$Y$的所有proper set和$X$,它们构成的lattice $\mathcal{C}_{\Gamma}$是和$Y$上所有子集构成的lattice $\lattice_{\mathfrak{P}(Y)}$是isomorphic,这个isomorphism是比较明显的,$Y$上的proper set映到它本身,$X$映到$Y$. $Y$是一个finite set,所以$\lattice_{\mathfrak{P}(Y)}$是一个algebraic lattice,{\color{red} 有个问题那么isomorphism是保持algebraic的?这个是显然的},想想就行. 考虑$\Gamma(Y)$,其中$b \in \Gamma(Y)$,但是对任意的$F \subseteq Y$都有$b \notin \Gamma(F)$,所以$\Gamma(Y)$是不满足$\Gamma$是algebraic的.
\end{example}
\newpage
\begin{definition}
\rm Let $\slattice = (S, \vee)$ be a join semilattice. A subset $A$ of $S$ is called an {\color{red} ideal} if
\begin{enumerate}
\item $x,y \in A$ implies $x \vee y \in A$.
\item if $z \leq y \in A$ impiles $z \in A$.
\end{enumerate}
{\color{blue} 用自然语言来描述就是ideal首先是要在$\vee$的作用下封闭的. 若存在对任意一个元素$z$,它小于等于ideal中的某个元素,那么$z$也在ideal里面}.
\end{definition}
\begin{proposition}
\rm {\color{red}(ideal closure operator的引入)} Ideals are defined by closure rules,so the intersection of a set of ideals of $\slattice$ is again one. Since the closure rules are finitary, {\color{red} the lattice of ideals is algebraic}.
The closure operator $I$ on $S$ such that $I(B)$ is the ideal of $\slattice$ generated by $B$ is given by
$$
I(B) = \SET{x \in S}{$x \leq \bigvee F$ for some finite $F \subseteq B$}.
$$
The ideal lattice of a join semilattice is denoted by $\mathcal{I}(\mathcal{S})$. The ideal lattice of a lattice $\lattice$ is likewise denoted by $\mathcal{I}(\lattice)$.
\end{proposition}
{\color{blue} 不得不说closure rules抽象却深刻,扮演了一个很重要的角色}.
\begin{proof}
{\color{red} 我们来证明$I$是一个closure operator且$I(B)$是一个ideal}.
任取$x,y \in I(B)$,那么分别对应存在$x \leq F_x$和$y \leq F_y$,自然地$x \vee y \leq \bigvee(F_x \cup F_y)$其中$F_x$和$F_y$都是finite的,所以$x \vee y \in I(B)$. 若$z \leq y \in I(B)$,那么$z \leq \bigvee F_y$,所以$z \in I$. 综上$I(B)$是一个ideal.
$B \subseteq I(B)$,这是显然的,取每个$B$上单点集. 自然地$A \subseteq B$,也有$I(A) \subseteq I(B)$. 考虑$x \in I(I(B))$,那么存在finte set $F$对应$x \leq \bigvee F \subseteq I(B)$. 自然地有$F \subseteq I(B)$,那么对于任意$y \in F$,都对应一个$ y \leq \bigvee F_y \subseteq B$. 所以
$$
F \leq \bigvee F \leq \bigvee \bigcup\limits_{y \in F} F_y.
$$
自然地$x \leq \bigvee \bigcup\limits_{y \in F} F_y.$所以$x \in I(B)$,即$I(B) \supseteq I(I(B))$,前面已经保证了$I(I(B)) \supseteq I(B)$,所以$I(I(B)) = I(B)$.
\end{proof}
\begin{theorem}
\rm {\color{red} (ideal closure operator生成的algebraic lattice的性质)} If $\slattice$ is a join semilattice with 0, then the ideal lattice $\mathcal{I}(\mathcal{S})$ is algebraic. The {\color{red} compact elements of $\mathcal{I}(\mathcal{S})$ are the principal ideals} $\downarrow x$ with $x \in S$. Conversely, if $\lattice$ is an algebraic lattice, then $\lattice^c$ is a join semilattice with 0, and $\lattice \cong \mathcal{I}(\lattice ^ c)$.
\end{theorem}
\begin{proof}
先来证明$\mathcal{I}(\slattice)$的compact elements是principle ideals. $I$是一个algebraic closure operator在上面已经证明了. 由Theorem 3.9我们知道compact element是$I(F)$其中$F$是$S$上的finite subset. 我们需要证明$I(F)$里面有一个maximal element,即$\bigvee F \in I(F)$. 由于$F$是finite的,前面的结论是显然的,所以$I(F) = \downarrow \bigvee F$.
如果$\lattice$是一个algebraic lattice,$\lattice^c$是一个join semilattice with 0 在proposition 3.3中已经证明了. 这里的$I$就是下面定理Theorem 3.16中$\Delta$更加朴素刻画,因为$I$在定义上可以更直观地看出它是algebraic的.
\end{proof}
\begin{theorem}
\rm {\color{red}(第一同构定理?)} If $\lattice$ is an algebraic lattice, define a algebraic closure operator $\Delta$ on the $\lattice^c$ by
$$
\Delta(A) = \Set{x \in \lattice^c}{x \leq \bigvee A}
$$
where $A \subseteq \lattice^c$. Then $\lattice$ is isomorphic to $\mathcal{C}_\Delta$. Then isomorphism $\func{\varphi}{\lattice}{\mathcal{C}_\Delta}$ is just given by $\varphi(a) = \Set{x \in \lattice^c}{x \leq a}$.