-
Notifications
You must be signed in to change notification settings - Fork 0
/
universal-algebra.tex
426 lines (342 loc) · 24.2 KB
/
universal-algebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
\documentclass{article}
\usepackage{ctex}
\usepackage{tikz}
\usetikzlibrary{cd}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
%\usepackage{unicode-math}
\usepackage[textwidth=18cm]{geometry} % 设置页宽=18
\usepackage{blindtext}
\usepackage{bm}
\parindent=0pt
\setlength{\parindent}{2em}
\usepackage{indentfirst}
\usepackage{xcolor}
\usepackage{titlesec}
\titleformat{\section}[block]{\color{blue}\Large\bfseries\filcenter}{}{1em}{}
\titleformat{\subsection}[hang]{\color{red}\Large\bfseries}{}{0em}{}
%\setcounter{secnumdepth}{1} %section 序号
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{example}[theorem]{Example}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{exercise}{Exercise}[section]
\newcommand*{\xfunc}[4]{{#2}\colon{#3}{#1}{#4}}
\newcommand*{\func}[3]{\xfunc{\to}{#1}{#2}{#3}}
\newcommand\Set[2]{\{\,#1\mid#2\,\}} %集合
\newcommand\SET[2]{\Set{#1}{\text{#2}}} %
\newcommand\slattice{\mathcal{S}}
\newcommand\lattice{\mathcal{L}}
\newcommand\Sg{\text{Sg}}
\newcommand\algebra{\mathbf{A}}
\newcommand\Sub[1]{\text{Sub}(#1)}
\newcommand{\redt}[1]{\textcolor{red}{#1}}
\newcommand{\bluet}[1]{\textcolor{blue}{#1}}
\begin{document}
\title{Lattice}
\author{枫聆}
\maketitle
\tableofcontents
\newpage
\section{The Elements of Universal Algebra}
\subsection{Definition and Examples of Algebras}
{\color{red}
One of the aims of universal algebra is to extract, whenever possible, the common elements
of several seemingly different types of algebraic structures}.
\begin{definition}
\rm For $A$ a nonempty set and $n$ a nonnegative integer we define $A^{0} = \{\emptyset\}$,and,for $n > 0$,$A^n$ is the set of n-tuples of elements from $A$. An {\color{red} n-ary operation} (or function) on $A$ is any function $f$ from $A^n$ to $A$; n is the {\color{red} arity} (or rank) of $f$. A {\color{red} finitary operation} is an n-ary operation,for some n. The image of $\left< a_1, \cdots , a_n \right>$ under an n-ary operation $f$ is denoted by $f(a_1,\cdots,a_n)$. An operation $f$ on $A$ is called a {\color{red} nullary operation} (or constant) if its arity is zero; it is completely determinded by the image $f(\emptyset)$ in $A$ of the only element $\emptyset$ in $A^0$, and as such it is convenient to identify it with the element $f(\emptyset)$. Thus a nullary operation is thought of as an element of $A$. An operation $f$ on $A$ is {\color{red} unary, binary, or ternay} if its arity is 1,2, or 3, respectively.
\end{definition}
\begin{definition}
\rm A {\color{red} language} (or type) of algebras is a set $\mathcal{F}$ of function symbols such a nonnegative integer $n$ is assgined to each member $f$ of $\mathcal{F}$. This integer is called the arity (or rank) of $f$, and $f$ is said to be an n-ary function symbol. The subset of n-ary function symbols in $\mathcal{F}$ is denoted by $\mathcal{F}_n$.
\end{definition}
\bluet{the language of algebra 就是一堆$n$元操作,简称n-ary function}.
\begin{definition}
\rm If $\mathcal{F}$ is a language of algebras then an {\color{red} algebra} $\mathbf{A}$ of type $\mathcal{F}$ is an ordered pair $\left<A,F\right>$ where $A$ is a {\color{red} nonempty set} and $F$ is a family of {\color{red} finitary operations} on A indexed by the language $\mathcal{F}$ such that corresponding to each n-ary function symbol $f$ in $\mathcal{F}$ there is an n-ary operation $f^\mathbf{A}$ on $A$. The set $A$ is called the {\color{red} universe} ({\color{blue} 全域}) (or underlying set) of $\mathbf{A} =\left<A,F\right>$, and the $f^\mathbf{A}$ ’s are called the {\color{red} fundamental operations} ({\color{blue}基本运算}) of $\mathbf{A}$. (In practice we prefer to write just $f$ for $f ^\mathbf{A}$ —this convention creates an ambiguity which seldom causes a problem. However, in this chapter we will be unusually careful.) If $\mathcal{F}$ is finite, say $\mathcal{F} = \{f_1,\cdots,f_k\}$, we often write $\left<A, f_1,\cdots,f_k\right>$ for $\left<A,F\right>$, usually adopting the convention:
$$
\text{arity}~f_1 \geq \cdots \geq \text{arity}~f_k.
$$
An algebra $\mathbf{A}$ is {\color{red} unary} if all of its operations are unary, and it is mono-unary if it has just one unary operation.
\end{definition}
{\color{blue} 抽象来说一个algebra就是一个集合和一堆finitary operations构成的,在目前已经学到的代数中operation的arity大多数不会超过2(够modern).}
\begin{example}
\rm $\mathbf{A}$ is a {\color{red} groupoid} if it has just one binary operation; this operation is usually denoted by $+$ or $\cdot$, and we write $a+b$ or $a \cdot b$ for the image of $\left<a,b\right>$ under this operation, and call it the sum or product of $a$ and $b$, respectively.
\end{example}
\begin{definition}
\rm An alegebra $\mathbf{A}$ is {\color{red} finite} if $|\mathbf{A}|$ is finite, and trivial if $|\mathbf{A}|=1$.
\end{definition}
\begin{example}
\rm Some well-known algebras
\begin{itemize}
\item Group
\item Semigroup (半群) and Monoid (幺半群)
\item ...
\end{itemize}
\end{example}
\newpage
\subsection{Isomorphic Algebras and Subalgebras}
\begin{definition}
\rm Let $\mathbf{A}$ and $\mathbf{B}$ be two algebras of the {\color{red} same type} $\mathcal{F}$. Then a function $\func{\alpha}{A}{B}$ is an {\color{red} isomorphism} from $\mathbf{A}$ to $\mathbf{B}$ if $\alpha$ is one-to-one and onto, and for every n-ary $f \in \mathbf{F}$, and for $a_1,\cdots,a_n \in A$, we have
$$
\alpha f^\mathbf{A}(a_1,\cdots,a_n) = f^\mathbf{B}(\alpha a_1,\cdots,\alpha a_n).
$$
We say $\mathbf{A}$ is isomorphic to $B$, if there is a isomorphism from $\mathbf{A}$ to $\mathbf{B}$. i.e. suppose $f$ is $*$, $\alpha(a * b) = \alpha(a) * \alpha(b)$.
\end{definition}
{\color{blue} 老样子元素上保持bijective,对应的运算结果也保持一致}.
\begin{definition}
\rm Let $\mathbf{A}$ and $\mathbf{B}$ be two algebras of the same type. Then $\mathbf{B}$ is a {\color{red} subalgebra} of $A$ if $B \subseteq A$ and every fundamental operation of $\mathbf{B}$ is the restriction of the corresponding operation of $\mathbf{A}$, i.e., for each function symbol $f$, $f^\mathbf{B}$ is $f^\mathbf{A}$ restricted to $B$; we write simply $\mathbf{B} \leq \mathbf{A}$.
A {\color{red} subuniverse} of $\mathbf{A}$ is a subset $B$ of $A$ which is closed under the fundamental operations of $\mathbf{A}$, i.e., if $f$ is a fundamental n-ary operation of $\mathbf{A}$ and $a_1,\cdots,a_n \in B$ we wound required $f(a_1,\cdots,a_n) \in B$.
\end{definition}
{\color{blue} 这个restriction就是只对定义域做限制的意思,subalgebra是一种构造新代数的方法,后面会学到另外几种. subalgebra和subuniverse的联系是,subalgebra一定是subuniverse,但是subuniverse不是一定是subalgebra,i.e 如果一个algebra有一个nullary,那么empty set是一个subuniverse,但是它是不是subalgebra}.
\begin{definition}
\rm Let $\mathbf{A}$ and $\mathbf{B}$ be of the same type. A function $\func{\alpha}{A}{B}$ is an embedding of $\mathbf{A}$ into $\mathbf{B}$ if $\alpha$ is one-to-one and satisfies
$$
\alpha f^\mathbf{A}(a_1,\cdots,a_n) = f^\mathbf{B}(\alpha a_1,\cdots,\alpha a_n).
$$
Such an $\alpha$ is also called a monomorphism. We say $\mathbf{A}$ can be embedded in $\mathbf{B}$ if there is an embedding of $\mathbf{A}$ into $\mathbf{B}$.
\end{definition}
{\color{blue} 单纯地去掉surjective.}
\begin{theorem}
\rm If $\func{\alpha}{A}{B}$ is an embedding, then $\alpha(A)$ is a subuniverse of $\mathbb{B}$.
\end{theorem}
\begin{proof}
我们需要说明$\alpha(A)$在对应的n-ary operation下保持封闭. 因为$\alpha$是embedding,所以对应一个n-ary operation $f$和$a_1,\cdots,a_n \in A$有
$$
f^\mathbf{B}(\alpha a_1,\cdots,\alpha a_n) = \alpha f^\mathbf{A}(a_1,\cdots,c_n) \in \alpha(A).
$$
已经证毕.
\end{proof}
\newpage
\subsection{Algebraic Lattices and Subuniverses}
{\color{red} 这一章阐述algebraic lattice是如何自然地出现在了universe algebra里面}.
\begin{definition}
\rm Given an algebra $\mathbf{A}$ define, for every $X \subseteq A$,
$$
\Sg(X) = \bigcap \Set{B}{X \subseteq B\ \text{and}\ B\ \text{is a subuniverse of}\ \mathbf{A}}.
$$
We read $\Sg(X)$ as "{\color{red} the subuniverse generated by $X$}".
\end{definition}
\begin{definition}
\rm A closure operator $C$ on the set $A$ is an {\color{red} algebraic closure operator} if for $X \subseteq A$
$$
C(X) = \bigcup\Set{C(Y)}{Y \subseteq X\ \text{and}\ Y\ \text{is finite}}.
$$
\end{definition}
\begin{theorem}
\rm If we are given an algebra $\mathbf{A}$, then {\color{red} $\Sg$ is an algebraic closure operator} on $A$.
\end{theorem}
\begin{proof}
很明显任意地subuniverses交还是一个subuniverse,所有的subuiverses构成了一个closure system,所以$\Sg$是一个closure operator. 对于任意的$X \subseteq A$我们定义
$$
E(X) = X \cup \Set{f(a_1,\cdots,a_n)}{f\ \text{is a fundamental $n$-ary operation on}\ A\ \text{and}\ a_1,\cdots,a_n \in X}.
$$
然后定义它的$n$次复合$E^n(X)$为
$$
\begin{aligned}
E^0(X) &= X \\
E^{n+1}(X) &= E(E^n(X)).
\end{aligned}
$$
由于$A$上所有fundamental operation都是finitary,且有
$$
X \subseteq E(X) \subseteq \cdots \subseteq E^n(X).
$$
接下来我们来证明下面的式子
$$
{\color{red} \Sg(X) = X \cup E(X) \cup E^2(X) \cup \cdots}.
$$
思路是(1)$\Sg(X) \subseteq X \cup E(X) \cup E^2(X) \cup \cdots$和(2)$X \cup E(X) \cup E^2(X) \cup \cdots \subseteq \Sg(X)$.
(1) 我们从$X \cup E(X) \cup E^2(X) \cup \cdots$这种构造出发,实际上这种构造得到的就是包含$X$的最小subuniverse. 考虑它的bound,可能存在某个最小的$k$使得$E^{k+1}(E^k(X)) = E^k(X)$,那么当$i > k$时都有$E^i(X) = E^k(X)$,无疑问现在$E^k(X)$是一个subuniverse并且包含$X$,这其实就说明了$\Sg(X) \subseteq E^k(X)$. 如果你不能找到这样的$k$,那么会有若$i>k$,那么$E^k(X) \subset E^i(X)$,但是它是bound by $A$,且$\Sg(A) = A$,这是显然地.
(2) 任取$x \in \Sg(X)$, 我们用$\{Z_i\}_{i \in I}$表示所有such that $X \subseteq Z$且$Z$是$\mathbf{A}$的一个subuniverse. 那么对任意的$i$,有$x \in Z_i$. 那么我们更有
$$
\Sg(X) = E^n(Z_1) \cap E^n(Z_2) \cap \cdots.
$$
对任意的$n$成立. 并且我们还有
$$
E^n(X) \subseteq E^n(Z_1) \cap E^n(Z_2) \cap \cdots.
$$
这是因为每一项都有$E^n(X) \subseteq E^n(Z_i)$. 那么我们把$n$取遍,就可以得到
$$
X \cup E(X) \cup E^2(X) \cup \cdots \subseteq \Sg(X).
$$
综上$\Sg(X) = X \cup E(X) \cup E^2(X) \cup \cdots.$
那么对于任意的$a \in \Sg(X)$,都有$a \in E^n(X)$其中$n < \omega$ (omega 表示无穷远它比任何的自然数都大). 那么存在finite $Y \subseteq X$,使得$a \in E^n(Y)$. 这个过程就是把生成$a$的哪些元素在$E^{n-1}(X)$里面挑出来,然后循环往复,$n$是finite的,所以$Y$也是有限的. 这就说明了$\Sg(X) = \bigcap \Sg(Y_i)$,因为每一个$a$都可以找到一个finite $Y$.
还是写一下严格的归纳假设吧,首先我们点出一个关系. 注意到$E^{\cdot}$是单调的,那么给定两个集合$X,Y$,因为$X \subseteq X \cup Y$和$Y \subseteq X \cup Y$,所以$E^k(X) \cup E^k(Y) \subseteq E^k(X \cup Y)$.
我们要证明(1)任意的$x \in E^k(X)$都有finite set $Y \subseteq X$使得$x \in E^k(Y)$.
那么当$k=0$时,
$$
a \in E^0(X) = X \Rightarrow a \in E^0(\{a\}),
$$
所以这里可以取$Y = \{a\}$.
假设对任意$k < n$,都有命题(1)成立,那么当$k=n$时,
$$
\begin{aligned}
a \in E^n(X) \Leftrightarrow& a \in E(E^{n-1}(X))\\ &= E^{n-1}(X) \cup \Set{f(a_1,\cdots,a_n)}{f\ \text{is a fundamental $t$-ary operation on}\ A\ \text{and}\ a_1,\cdots,a_n \in X}\\ &= E^{n-1}(X) \cup B_n,
\end{aligned}
$$
要么$a \in E^{n-1}(X)$或者$a \in B_n$. 如果$a \in E^{n-1}(X)$,那么归纳假设就完成了. 如果$a \in B_n$,则$a \in E(\{a_1,\cdots,a_t\})$,其中$a_1,\cdots,a_t \in E^{n-1}(X)$ (这里用$t$是不想和这个上标$n$弄混),那么根据假设有$a_i \in E^{n-1}(Y_i)$,其中finite set $Y_i \subseteq X$,再替换一下
$$
a \in E(\{a_1,\cdots,a_t\}) \subseteq E(\bigcup\limits_{1}^{t} E^{n-1}(Y_i)) \subseteq E(E^{n-1}(\bigcup\limits_{1}^{t} Y_i)) = E^n(\bigcup\limits_{1}^{t} Y_i).
$$
所以这里取$Y = \bigcup\limits_{i=1}^{t} Y_i$,它确实是一个finite set.
%最后的证明不规范 https://math.stackexchange.com/questions/725150/operator-generating-subuniverse-generated-by-x-is-algebraic-closure-operator
\end{proof}
\begin{corollary}
\rm If $\mathbf{A}$ is an algebra then $\mathcal{L}_{\Sg}$, the lattice of subuniverses of $\mathbf{A}$, is an algebraic lattice.
\end{corollary}
\newpage
\begin{definition}
\rm Given an algebra $\algebra$, {\color{red} $\Sub{\algebra}$} denotes the set of subuniverses of $A$, and $\Sub{\algebra}$ is the corresponding algebraic lattice, the lattice of subuniverses of $\algebra$. For $X \subseteq A$ we say $X$ generates $\algebra$ if $\Sg(X) = A$. The algebra $\algebra$ is finitely generated if it has a finite set of generators.
\end{definition}
{\color{blue} 如果$A$有有限多个生成元,那么就说algebra $\algebra$是有限生成的}.
\begin{theorem}
\rm {\color{red} (closed sets对应某个algebra的universes)} Let $\Gamma$ be an algebraic closure operator on a set $X$. Then there is an $\algebra$ on the set $X$ such that the subuniverse of $\algebra$ are precisely the closed sets of $\Gamma$.
\end{theorem}
\begin{proof}
Basic: 我们要构造出来一个algebra $\algebra$,首先我们得确定在哪个集合上,再给定它的operations.
我们的目标: 当前的前提是给定$X$上的algebraic closure operator $\Gamma$,以$X$为underlying set,构造其上的operations使得对应的algebra $\algebra$ 的universes都是$\Gamma$对应的closed set.
对任意的finite set $B \subseteq X$和任意的$b \in \Gamma(B)$,我们定义n-ary operation如下,其中$n = |B|$.
$$
f_{B,b}(a_1,\cdots,a_n) = \left\{
\begin{array}{ll}
b \ & \text{if}\ B=\{a_1,\cdots,a_n\} \\
a_1\ & \text{otherwise}.
\end{array}
\right.
$$
接下来我们证明$\Gamma$对应的closed set $A$是一个在上面定义的operations下是封闭的. 这里明显地有
$$
f_{B,b}(a_1,\cdots,a_n) \subseteq \Gamma(\{a_1,\cdots,a_n\}).
$$
这里我们再利用一个结论(证明在lattice note里面),(1)$\Gamma$是algebraic closure operation,那么若$A \subseteq X$是一个closed set当且仅当$\Gamma(F) \subseteq A$对所有的finite set $F \subseteq A$成立. 那么任取对任意上述的operation,我们取$a_1,\cdots,a_n \in A$,那么
$$
f_{B,b}(a_1,\cdots,a_n) \subseteq \Gamma(\{a_1,\cdots,a_n\}) \subseteq A
$$
所以上述所有的operations在$A$下是封闭.
反过来我们还要证明一个universe $S$ 是closed set. 还是用(1)这个结论,我们证明所有的finite set $B \subseteq S$,$\Gamma(B) \subseteq S$,其中
$$
\Gamma(B) = \Set{f_{B,b}(a_1,\cdots,a_n)}{B={a_1,\cdots,a_n},b \in \Gamma(B)}.
$$
自然地,因为$f_{B,b}(a_1,\cdots,a_n)$在$S$下是封闭的,这个operation的构造就巧到这里,所以$\Gamma(B) \subseteq S$.
\end{proof}
\begin{theorem}
\rm {\color{red} (algebraic lattice同构于某个algebra的universes构成的lattice)} If $\lattice$ is an algebraic lattice, then $\lattice \cong \Sub{\algebra}$, for some algebra $\algebra$.
\end{theorem}
\begin{proof}
这个命题是上面命题的一个推论,这里的$\algebra$的underlying set可以设为$\lattice^c$即$\lattice$上所有的compact elements. 关于这一点去看lattice note里面$\lattice \cong \mathcal{C}_{\Delta}$部分. 那么接下来就是证明$\Sub{A} = \mathcal{C}_{\Delta}$,这里有更比上面更简单的operations的构造方式. 对任意的$a \in \mathcal{C}_{\Delta}$, 定义一个unary operation
$$
f_{a}(x) = \left\{
\begin{array}{ll}
a \ & \text{if}\ a \leq x \\
x\ & \text{otherwise}.
\end{array}
\right.
$$
把这样的unary operation作用到某个$x \subseteq \lattice^c$,它生成就是principle ideal $\downarrow x$,自然地到某个$A \subseteq lattice^c$,它就是$\Delta(A)$.
\end{proof}
\newpage
\subsection{The Irredundant Basis Theorem}
\begin{definition}
\rm Let $C$ be a closure operator on $A$. For $n < \omega$, let $C_n$ be the function definied on $\text{Su}(A)$ (power set) by
$$
C_n(X) = \bigcup\Set{C(Y)}{Y \subseteq X,\ |Y| \leq n}.
$$
We say that $C$ is $n$-ary if
$$
C(X) = C_n (X) \cup C_n^2(X) \cup \cdots,
$$
where
$$
\begin{aligned}
C_n^1(X) &= C_n(X), \\
C_n^{k+1}(X) &= C_n(C_n^k(X)).
\end{aligned}
$$
也可以用$C(X) = C_n^{\omega}(X)$来表示,其中$\omega$表示基数最小infinite set的基数. Tarski原本$C_n$的definition里面去掉了$|Y| \leq n$中的等号,这个$n$也叫做the rank of $(A,C)$.
\end{definition}
%https://pdf.sciencedirectassets.com/271536/1-s2.0-S0012365X00X02609/1-s2.0-0012365X75900333/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJ3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDWjKUirhbVYtbBPzl18bAayuiamGcqjF4cCbt4l%2FqGswIhAIRpADqK85EmjFgXTJQa70PmJDOV4DYB0iRQ5vV%2BMDt2Kr0DCNX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQAxoMMDU5MDAzNTQ2ODY1IgxaBY6PwiSWwALol%2BgqkQNbGw6RJ0FfAR2LIdBE52bbJIPsfvJGAvfII6W%2FNsldi8Dpd0KeAs1ocLWPWu%2BhEF1s6nr8JoZqoXYj6vOHCDPkMTFzljMzKl54Onl%2BS4jhkA77aE5LztNlXhehZlIWKrSQhNr43bbrY9IVW239WldemfFVPOuLdBCMeefzDazqScmrnlNUy7AwEOHyNSlUDkZuz7GaoUNZvtJx5EoPAo%2BJxf4KNWhE6%2FK%2FiX6y1ZGPzQQrUxvZoc0ihSMqziC59shVnvZdhzGQwUhCoLhS4786syVNHZYe9%2BDbbbVAw2WQGS5ZWGjh0tjUg6JMUAmWqW%2Fd0Dn7zg6Stuctb3%2BEzzshy%2B8kblanPDRm9c4lTKkllta8Bz4tbDQ2QB%2BwTpImLccR6wG5w13mI8CxphT2d%2FjwVcS6YKs18s%2FFar1777yYnICU02eQ3UshS9fvWp7P366Cg2LAYtlPxi0fd6zK7XUyCF3ghUsCncUtRGJohk1MAzhACMGQJSt32%2BvGnWqg%2F8XZL4rHofp%2Fxc1acu69MRJ9rzCD1uyCBjrqAWUqtClc5LxtxcxhLBv1QrCJ0DlSTaGLpLfHIKTkAc365zT26tUaMfeh94JOg%2B1Ky4K%2F4Ha%2FJrywGQJeeUM9sXm0cNMwA%2FovVf2VzCHXXancu8rxL9MfEW%2FDJxjV9Ev3uj%2BY55POhuTxH5aGRxAT12QNJAc%2BSKdqpRvQ08j4H%2B1R%2FZRjOpP8iAiDRNTgo6JZA2CU0rCPLQrXCyoz01n1Ta6qtLhL4Iq5MXBt02%2FP%2FtFuUi6LKLBgqquQLSrK%2BAzb4pXciLwUv81UQbI66OnRf25sLwz9X%2Fvu6bQ9%2FmwAicxOu4JuJUJma8o7bg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210324T132857Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYS6IXFU5I%2F20210324%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=befd72904a96fb4310db932fb1448733eedd8419d0115911f15d28c5bb9e8d5b&hash=4acfc458cfe99335888ff2b376398155000dd6e9e3868490c2e55e316080af04&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=0012365X75900333&tid=spdf-d1eaed5e-918a-4bfd-af1c-59511093703f&sid=7d0d80a511ba8648b06beed4b4885ab20a62gxrqa&type=client
\begin{lemma}
\rm Let $\algebra$ be an algebra all of whose fundamental operations have arity at most $n$. Then $\Sg$ is an $n$-ary closure operator on $A$.
\end{lemma}
\begin{proof}
从Theorem 1.13我们得到
$$
E(X) \subseteq (\Sg)_n(X) \subseteq \Sg(X),
$$
第一个$\subseteq$由$E(X)$的definition,第二个$\subseteq$由$\Sg$的definition. 因此
$$
\begin{aligned}
\Sg(X) &= X \cup E(X) \cup E^2(X) \cup \cdots \\
&\subseteq (\Sg)_n(X) \cup (\Sg)_n^2(X) \cup \cdots \\
&\subseteq \Sg(X).
\end{aligned}
$$
所以$\Sg(x) = (\Sg)_n(X) \cup (\Sg)_n^2(X) \cup \cdots . $
\end{proof}
\begin{theorem}
\rm Let $C$ be a closure operator on $A$. $A'$ is closed set such that $C(A') = A'$ and $C'$ is the restriction of $C$ to the family of subsets of $A'$. Then $C'$ is also a closure operator; if, moreover, $C$ is $n$-ary,then so is $C'$.
\end{theorem}
\begin{proof}
$C'$是closure operator这是显然的,对于任意的$B' \subseteq A'$, $C'(B') = C(B')$,所以它们两个rank是相同的.
\end{proof}
\begin{definition}
\rm The set $X$ is a {\color{red} minimal generating set} for $Y$ if $X$ generates $Y$ and no proper subset of $X$ generates $Y$.
\end{definition}
\begin{definition}
\rm Let $C$ be a closure operator on $S$. A set $X \subseteq S$ is called {\color{red} irredundant} if $y \notin C(X-\{y\})$ for every $y \in X$.
\end{definition}
\begin{definition}
\rm Suppose $C$ is a $n$-ary closure operator on $S$. A minimal generating set of $S$ is called an {\color{red} irredundant basis}. Let $\text{IrB}(C) = \SET{n \leq \omega}{$S$ has an irredundant basis of n elements}.$
\end{definition}
\begin{proposition}
\rm If $S$ has a finite basis $B$, then it also has a finite irredundant basis $B'$, so $\text{IrB}(S)$ is not empty.
\end{proposition}
\begin{proposition}
\rm If $C$ is finite ary, then every basis for $S$ includes a finite irredundant basis. So that no infinite basis of $S$ is irredundant. Thus $\text{IrB}(S)$ is the set of cardinalities of all irredundant basis for $S$.
\end{proposition}
\begin{theorem}
\rm If $C$ is an $n$-ary closure operator on $S$ with $n \geq 2$, and if $i < j$ with $i, j \in \text{IrB}(C)$ such that
$$
\{i+1,\cdots,j-1\} \cap \text{IrB}(C) = \emptyset,
$$
then $j-i \leq n-1$. In particular, if $n=2$ then $\text{IrB}(C)$ is a convex subset of $\omega$, i.e., a sequence of consecutive numbers.
\end{theorem}
\begin{proof}
让$B$是一个irreducible basis且$|B| = j$. 让$K$表示那些irreducible basis $A$且$|A| \leq i$构成的集合. 我们的策略是从$K$里面挑一个$A_0$出来,让这个$A_0 \subseteq C_n^{t+1}(B)$但是$A_0 \nsubseteq C_n^{t}(B)$,那么再取一点$a_0 \in C_n^{t+1}(B) - C_n^{t}(B)$,把这个$a_0$替换成$c_1,\cdots,c_m \in C_n^{t}(B)$,这样构成了一个新的base $A_1$,它里面是有一个irredundant basis $A_2$的,我们来探讨$A_2$存在性. 这是基本的想法,下面来阐述一下这个想法的细节。
\begin{center}
\includegraphics[scale=0.5]{./images/irredundant.png}
\end{center}
首先$B$是一个irreducible basis且$C$是一个$n$-ary closure operator,那么
$$
A \subseteq S = C(B) = C_n^{\omega}(B).
$$
我们由前面的命题可以知道$A$是一个finite set且是一个base,那么$A \nsubseteq B$. 且$C_n^{k+1} \supseteq C_n^{k}$,那么是可以找到某个$t$使得$A \subseteq C_n^{t+1}(B)$且$A \nsubseteq C_n^{t}(B)$的,这就是为什么可以找到上面$A_0$的原因. 并且如果我们找到这样的$A_0 \in K$,那么
$$
A_0 \nsubseteq C_n^t(B)\ \text{implies} \ A \nsubseteq C_n^{t}(B),
$$
对任意的$A \in K$成立. 假设不成立,会得到$A$不是irreducible的,这是矛盾的. 我们再考虑对于$A \in K$且$A\subseteq C_n^{t+1}(B)$,我们假设
$$
|A_0 \cap (C_n^{t+1}(B) - C_n^{t}(B))| \leq |A \cap (C_n^{t+1}(B) - C_n^{t}(B))|,
$$
我们让$A_0$更靠近$B$一点,就是指$C_n^{t+1}(B)$和$C_n^t(B)$中间这个环,包含更少一点$A_0$中的点. 这样做的目的就是让后面得到的新base的基数尽可能的小. 然后我们选择一点$a_0 A_0 \cap (C_n^{t+1}(B) - C_n^{t}(B))$. 那么肯定是存在$b_1,\cdots,b_m \in C_n^t(B)$,其中$m \leq n$,使得
$$
a_0 \in C_n({b_1,\cdots,b_m}).
$$
然后把$a_0$替换掉得到的新base $A_1 = (A - \{a_0\}) \cup \{b_1,\cdots,b_m\}$,那么$A_0 \subseteq C(A_1)$,所以
$$
C(A_0) \subseteq C(A_1).
$$
那么在$A_1$上我们是可以找到一个irredundant basis $A_2 \subseteq A_1$. 现在我们有$|A_2| < |A_0| + n$. 如果$|A_0| + n \leq j$,那么这个$A_2$会和我们选择的$A_0$造成矛盾,为什么呢? 因为我们前提是$i$和$j$之间是没有irreducible basis的,那么$|A_2| \in K$, 同时$A_2 \subseteq C_n^{t+1}(B)$,就会造成
$$
|A_2 \cap (C_n^{t+1}(B) - C_n^{t}(B))| < |A_0 \cap (C_n^{t+1}(B) - C_n^{t}(B))|.
$$
所以这里$|A_0| + n \geq j$,其中$|A_0| \leq i$,那么就可以得到$j - i \leq n$.
我们来理一下关系,这个命题在讲如果两个irredundant basis的基数之间距离小到一定程度,你找不到一个irreducible basis的基数在它们之间. 这个距离如何描述呢? $j-i < n$. 上面证明的方法是尝试在irreducible basis 基数小于$i$的basis的基础上构造一个新的irreducible basis出来,看它落在哪里.
现在我们构造了出来了这个新的irreducible basis $A_2$,我们只知道$|A_2| < i + n$,并不知道它和$i$和$j$有什么关系.
我们先来思考一下$|A_2|$和$i$的关系,我们先得思考一下$A_0$取法的特殊性,$A_0$ minimal condition这个性质可以让我们取出来$A_2$它不在$K$里面的,因为$A_0$ minimal condition是相对于整个$A \in K$且$A \subseteq C_n^{t+1}(B)$而言的,这是我们的假设。所以$|A_2| > i$.
那么$|A_2|$和$j$的关系如何呢?我们来比较$|A_2|$的upper bound和$j$的关系. 然后我们知道了这个upper bound不能小于等于$j$的,所以最后得到了我们想要的结论.
\end{proof}
\end{document}