forked from skypilot-org/sky-llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat.py
238 lines (202 loc) · 8.39 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copied load() and setup_model_parallel() functions from https://github.com/facebookresearch/llama/blob/57b0eb62de0636e75af471e49e2f1862d908d9d8/example.py
# Copied sample_top_p() function from https://github.com/facebookresearch/llama/blob/57b0eb62de0636e75af471e49e2f1862d908d9d8/llama/generation.py
import fire
import json
import os
from pathlib import Path
import sys
import time
from typing import List, Set, Tuple
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
import torch
from llama import ModelArgs
from llama import Tokenizer
from llama import Transformer
def sample_top_p(probs, p):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
class ChatLLaMA:
MAX_SEQ_LEN = 2048
# FIXME
USER_PREFIX = 'User:'
CHATBOT_PREFIX = 'Chatbot:'
INIT_PROMPT = (
'The following is a conversation between a human and a chatbot. '
'The chatbot is responsible for answering the user questions, providing information, '
'and having discussions with users in a conversational manner.\n'
f'{USER_PREFIX} Hi, what is your name?\n'
f'{CHATBOT_PREFIX} Hi, my name is LLaMA.\n'
f'{USER_PREFIX} What is the largest city in the US?\n'
f'{CHATBOT_PREFIX} The largest city in the US by population is New York City, with over 8 million people.\n'
f'{USER_PREFIX} What is the highest mountain in the world?\n'
f'{CHATBOT_PREFIX} The highest mountain in the world is Mount Everest, '
'which is located in the Himalayas on the border between Nepal and Tibet.\n'
f'{USER_PREFIX} Explain cloud computing in 1 sentence.\n'
f'{CHATBOT_PREFIX} Cloud computing is the delivery of computing services, '
'including servers, storage, databases, networking, software, analytics, and intelligence, over the Internet.\n'
)
def __init__(
self,
local_rank: int,
world_size: int,
model: Transformer,
tokenizer: Tokenizer,
temperature: float,
top_p: float,
stop_token_ids: Set[int] = set(),
max_gen_len: int = 256,
) -> None:
self.local_rank = local_rank
self.world_size = world_size
self.model = model
self.tokenizer = tokenizer
self.temperature = temperature
self.top_p = top_p
self.stop_token_ids = stop_token_ids
self.max_gen_len = max_gen_len
self.cur_pos = 0
self.stop_token_ids.add(self.tokenizer.eos_id)
def forward_step(
self,
input_tokens: torch.Tensor,
input_len: int,
) -> torch.Tensor:
input_tokens = input_tokens[:, :input_len]
logits = self.model.forward(input_tokens, self.cur_pos)
if self.temperature > 0:
probs = torch.softmax(logits / self.temperature, dim=-1)
next_token = sample_top_p(probs, self.top_p)
else:
next_token = torch.argmax(logits, dim=-1)
self.cur_pos += input_len
return next_token
def chat(self) -> None:
if self.local_rank == 0:
print('Sampling parameters:')
print(f' temperature: {self.temperature}')
print(f' top p: {self.top_p}')
print(f' maximum response length: {self.max_gen_len}')
while True:
is_first_input = self.cur_pos == 0
if is_first_input:
print('Initializing the chatbot...')
if self.local_rank == 0:
if is_first_input:
input_str = self.INIT_PROMPT
else:
user_input = input(self.USER_PREFIX + ' ')
if user_input:
input_str = f'{self.USER_PREFIX} {user_input}\n'
input_str += f'{self.CHATBOT_PREFIX}'
else:
input_str = ''
input_tensor = torch.full(
(1, self.MAX_SEQ_LEN), self.tokenizer.pad_id).cuda().long()
if input_str:
input_tokens = self.tokenizer.encode(
input_str, bos=is_first_input, eos=False)
input_tensor[0, :len(input_tokens)] = torch.tensor(input_tokens).long()
else:
input_tensor = torch.empty((1, self.MAX_SEQ_LEN)).cuda().long()
torch.distributed.broadcast(input_tensor, src=0)
input_len = int((input_tensor != self.tokenizer.pad_id).sum())
if input_len == 0:
if self.local_rank == 0:
print('Finishing the chat. Wait a few seconds...')
exit()
if self.cur_pos + input_len > self.MAX_SEQ_LEN:
if self.local_rank == 0:
print('The conversation length has exceeded the maximum, which is 2048.')
exit()
if is_first_input:
_ = self.forward_step(input_tensor, input_len)
continue
output_tokens: List[int] = []
for _ in range(self.max_gen_len):
next_token = self.forward_step(input_tensor, input_len)
input_tensor = next_token
input_len = 1
next_token = int(next_token)
if next_token in self.stop_token_ids:
break
temp_output_tokens = output_tokens + [next_token]
temp_output = self.tokenizer.decode(temp_output_tokens)
if temp_output.endswith(self.USER_PREFIX):
self.cur_pos -= 1
output_tokens.pop()
break
elif temp_output.endswith(self.CHATBOT_PREFIX):
self.cur_pos -= 3
for _ in range(3):
output_tokens.pop()
break
else:
output_tokens.append(next_token)
if self.local_rank == 0:
output = self.tokenizer.decode(output_tokens)
print(f'{self.CHATBOT_PREFIX} {output.rstrip()}')
def setup_model_parallel(
seed: int,
) -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(seed)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_size: int,
) -> Tuple[Transformer, Tokenizer]:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert (
world_size == len(checkpoints)
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading the model weights. This may take several minutes.")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(max_seq_len=2048, max_batch_size=1, **params)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return model, tokenizer
@torch.inference_mode()
def main(
ckpt_dir: str,
tokenizer_path: str,
temperature: float = 0.8,
top_p: float = 0.99,
seed: int = 42,
) -> None:
local_rank, world_size = setup_model_parallel(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, 'w')
model, tokenizer = load(ckpt_dir, tokenizer_path, local_rank, world_size)
chat_llama = ChatLLaMA(
local_rank=local_rank,
world_size=world_size,
model=model,
tokenizer=tokenizer,
temperature=temperature,
top_p=top_p,
)
chat_llama.chat()
if __name__ == "__main__":
fire.Fire(main)