-
Notifications
You must be signed in to change notification settings - Fork 1
/
engine.py
214 lines (186 loc) · 8.76 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
import numpy as np
import sys
from model import model
from tqdm import tqdm
from utils.helpers import draw_seg_maps
from utils.helpers import save_model_dict
from utils.metrics import eval_metric
from utils.helpers import TensorboardWriter
model_path = "model.pth"
class Trainer:
def __init__(self, model, train_data_loader, train_dataset,
valid_data_loader, valid_dataset, classes_to_train,
epochs, device, lr, resume_training=None, model_path=None):
super(Trainer, self).__init__()
self.train_data_loader = train_data_loader
self.train_dataset = train_dataset
self.valid_data_loader = valid_data_loader
self.valid_dataset = valid_dataset
self.model = model
self.num_classes = len(classes_to_train)
self.epochs = epochs
self.device = device
self.lr = lr
self.optimizer = torch.optim.Adam(model.parameters(), lr=self.lr)
print('OPTIMIZER INITIALIZED')
self.criterion = nn.CrossEntropyLoss()
print('LOSS FUNCTION INITIALIZED')
# initialize Tensorboard `SummaryWriter()`
self.writer = TensorboardWriter()
print(f"NUM CLASSES: {self.num_classes}")
if resume_training == 'yes':
print('RESUMING TRAINING')
# load the model checkpoint
checkpoint = torch.load(model_path)
self.trained_epochs = checkpoint['epoch']
self.train_iters = checkpoint['train_iters']
self.valid_iters = checkpoint['valid_iters']
print(f"PREVIOUSLY TRAINED EPOCHS: {self.trained_epochs}")
if self.trained_epochs >= self.epochs:
print('Current epochs less than previously trained epcochs...')
print(f"Please provide greater number of epochs than {self.trained_epochs}")
sys.exit()
elif self.epochs > self.trained_epochs:
# load model weights state_dict
self.model.load_state_dict(checkpoint['model_state_dict'])
print('TRAINED MODEL WEIGHTS LOADED...')
# load trained optimizer state_dict
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print('TRAINED OPTIMIZER LOADED...')
elif resume_training == 'no':
self.train_iters = 0
self.valid_iters = 0
self.trained_epochs = 0
print('TRAINING FROM BEGINNING')
def get_num_epochs(self):
return self.trained_epochs
def fit(self, epoch):
print('Training')
if(epoch < 5):
self.optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
elif(epoch >=5 and epoch < 10):
self.optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
elif(epoch >=10 and epoch < 15):
self.optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
else:
self.optimizer = torch.optim.Adam(model.parameters(), lr=0.00001)
print(self.optimizer)
model.train()
train_running_loss = 0.0
train_running_inter, train_running_union = 0, 0
train_running_correct, train_running_label = 0, 0
# calculate the number of batches
num_batches = int(len(self.train_dataset)/self.train_data_loader.batch_size)
prog_bar = tqdm(self.train_data_loader,
total=num_batches)
counter = 0 # to keep track of batch counter
for i, data in enumerate(prog_bar):
counter += 1
data, target = data[0].to(self.device), data[1].to(self.device)
self.optimizer.zero_grad()
outputs = self.model(data)
outputs = outputs['out']
##### BATCH-WISE LOSS #####
loss = self.criterion(outputs, target)
train_running_loss += loss.item()
###########################
##### BATCH-WISE METRICS ####
correct, labeled, inter, union = eval_metric(outputs,
target,
self.num_classes)
# for IoU
train_running_inter += inter
train_running_union += union
# for pixel accuracy
train_running_correct += correct
train_running_label += labeled
#############################
##### BACKPROPAGATION AND PARAMETER UPDATION #####
loss.backward()
self.optimizer.step()
##################################################
##### TENSORBOARD LOGGING #####
train_running_IoU = 1.0 * inter / (np.spacing(1) + union)
train_running_mIoU = train_running_IoU.mean()
train_running_pixacc = 1.0 * correct / (np.spacing(1) + labeled)
self.writer.tensorboard_writer(
loss, train_running_mIoU, train_running_pixacc, self.train_iters,
phase='train'
)
###############################
prog_bar.set_description(desc=f"Loss: {loss:.4f} | mIoU: {train_running_mIoU:.4f} | PixAcc: {train_running_pixacc:.4f}")
self.train_iters += 1
##### PER EPOCH LOSS #####
train_loss = train_running_loss / counter
##########################
##### PER EPOCH METRICS ######
# IoU and mIoU
IoU = 1.0 * train_running_inter / (np.spacing(1) + train_running_union)
mIoU = IoU.mean()
# pixel accuracy
pixel_acc = 1.0 * train_running_correct / (np.spacing(1) + train_running_label)
##############################
return train_loss, mIoU, pixel_acc
def validate(self, epoch):
print('Validating')
model.eval()
valid_running_loss = 0.0
valid_running_inter, valid_running_union = 0, 0
valid_running_correct, valid_running_label = 0, 0
# calculate the number of batches
num_batches = int(len(self.valid_dataset)/self.valid_data_loader.batch_size)
with torch.no_grad():
prog_bar = tqdm(self.valid_data_loader,
total=num_batches)
counter = 0 # to keep track of batch counter
for i, data in enumerate(prog_bar):
counter += 1
data, target = data[0].to(self.device), data[1].to(self.device)
outputs = self.model(data)
outputs = outputs['out']
# save the validation segmentation maps every...
# ... last batch of each epoch
if i == num_batches - 1:
draw_seg_maps(data, outputs, epoch, i)
##### BATCH-WISE LOSS #####
loss = self.criterion(outputs, target)
valid_running_loss += loss.item()
###########################
##### BATCH-WISE METRICS ####
correct, labeled, inter, union = eval_metric(outputs,
target,
self.num_classes)
valid_running_inter += inter
valid_running_union += union
# for pixel accuracy
valid_running_correct += correct
valid_running_label += labeled
#############################
##### TENSORBOARD LOGGING #####
valid_running_IoU = 1.0 * inter / (np.spacing(1) + union)
valid_running_mIoU = valid_running_IoU.mean()
valid_running_pixacc = 1.0 * correct / (np.spacing(1) + labeled)
self.writer.tensorboard_writer(
loss, valid_running_mIoU, valid_running_pixacc, self.valid_iters,
phase='valid'
)
###############################
prog_bar.set_description(desc=f"Loss: {loss:.4f} | mIoU: {valid_running_mIoU:.4f} | PixAcc: {valid_running_pixacc:.4f}")
self.valid_iters += 1
##### PER EPOCH LOSS #####
valid_loss = valid_running_loss / counter
##########################
##### PER EPOCH METRICS ######
# IoU and mIoU
IoU = 1.0 * valid_running_inter / (np.spacing(1) + valid_running_union)
mIoU = IoU.mean()
# pixel accuracy
pixel_acc = 1.0 * valid_running_correct / (np.spacing(1) + valid_running_label)
##############################
return valid_loss, mIoU, pixel_acc
def save_model(self, epochs):
save_model_dict(self.model, epochs,
self.optimizer, self.criterion,
self.valid_iters, self.train_iters)