-
Notifications
You must be signed in to change notification settings - Fork 374
/
Copy pathextract_features.py
executable file
·106 lines (83 loc) · 3.54 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import time
import os
import argparse
import pdb
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from PIL import Image
import h5py
import openslide
from tqdm import tqdm
import numpy as np
from utils.file_utils import save_hdf5
from dataset_modules.dataset_h5 import Dataset_All_Bags, Whole_Slide_Bag, get_eval_transforms
from models import get_encoder
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def compute_w_loader(output_path, loader, model, verbose = 0):
"""
args:
output_path: directory to save computed features (.h5 file)
model: pytorch model
verbose: level of feedback
"""
if verbose > 0:
print('processing {}: total of {} batches'.format(file_path,len(loader)))
mode = 'w'
for count, data in enumerate(tqdm(loader)):
with torch.inference_mode():
batch = data['img']
coords = data['coord'].numpy().astype(np.int32)
batch = batch.to(device, non_blocking=True)
features = model(batch)
features = features.cpu().numpy()
asset_dict = {'features': features, 'coords': coords}
save_hdf5(output_path, asset_dict, attr_dict= None, mode=mode)
mode = 'a'
return output_path
parser = argparse.ArgumentParser(description='Feature Extraction')
parser.add_argument('--data_dir', type=str)
parser.add_argument('--csv_path', type=str)
parser.add_argument('--feat_dir', type=str)
parser.add_argument('--model_name', type=str, default='resnet50_trunc', choices=['resnet50_trunc', 'uni_v1', 'conch_v1'])
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--slide_ext', type=str, default= '.svs')
parser.add_argument('--no_auto_skip', default=False, action='store_true')
parser.add_argument('--target_patch_size', type=int, default=224,
help='the desired size of patches for scaling before feature embedding')
args = parser.parse_args()
if __name__ == '__main__':
print('initializing dataset')
csv_path = args.csv_path
bags_dataset = Dataset_All_Bags(csv_path)
os.makedirs(args.feat_dir, exist_ok=True)
dest_files = os.listdir(args.feat_dir)
model, img_transforms = get_encoder(args.model_name, target_img_size=args.target_patch_size)
model = model.to(device)
_ = model.eval()
loader_kwargs = {'num_workers': 8, 'pin_memory': True} if device.type == "cuda" else {}
total = len(bags_dataset)
for bag_candidate_idx in range(total):
slide_id = bags_dataset[bag_candidate_idx].split(args.slide_ext)[0]
bag_name = slide_id + '.h5'
bag_candidate = os.path.join(args.data_dir, 'patches', bag_name)
print('\nprogress: {}/{}'.format(bag_candidate_idx, total))
print(bag_name)
if not args.no_auto_skip and slide_id+'.pt' in dest_files:
print('skipped {}'.format(slide_id))
continue
output_path = os.path.join(args.feat_dir, 'h5_files', bag_name)
file_path = bag_candidate
time_start = time.time()
dataset = Whole_Slide_Bag(file_path=file_path, img_transforms=img_transforms)
loader = DataLoader(dataset=dataset, batch_size=args.batch_size, **loader_kwargs)
output_file_path = compute_w_loader(output_path, loader = loader, model = model, verbose = 1)
time_elapsed = time.time() - time_start
print('\ncomputing features for {} took {} s'.format(output_file_path, time_elapsed))
with h5py.File(output_file_path, "r") as file:
features = file['features'][:]
print('features size: ', features.shape)
print('coordinates size: ', file['coords'].shape)
features = torch.from_numpy(features)
bag_base, _ = os.path.splitext(bag_name)
torch.save(features, os.path.join(args.feat_dir, 'pt_files', bag_base+'.pt'))