-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve3.cc
442 lines (387 loc) · 13.2 KB
/
solve3.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// Solver for two phases at once.
//
// The calculation of newly-losing positions uses a list of candidate positions
// calculated by potential-new-losses. Otherwise, the logic is similar to
// solve-rN and solve2: for each potential new loss, all successors are
// examined, and only if all successors are winning for the opponent is the
// position marked losing.
//
// The calculation of newly-winning positions works similar to backpropagate2
// and solve2: for each newly-losing position, its predecessors are marked
// winning.
//
// Input files required for --phase=N:
//
// input/r(N-2).bin (output from the previous phase)
// input/r(N)-pot-loss.bin (generated with potential-new-losses --phase=N)
//
// Chunk output file name:
//
// chunk-r<N>-two.bin
//
// Ouput file format:
//
// EF-coded stream of newly-losing permutations
// EF-coded stream of newly-winning permutations
//
#include "auto-solver.h"
#include "accessors.h"
#include "board.h"
#include "bytes.h"
#include "chunks.h"
#include "dedupe.h"
#include "efcodec.h"
#include "flags.h"
#include "input-generation.h"
#include "input-verification.h"
#include "macros.h"
#include "parse-int.h"
#include "perms.h"
#include "search.h"
#include <cassert>
#include <chrono>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <map>
#include <optional>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
namespace {
constexpr const char *solver_id = "solve3-v0.0.0";
constexpr const char *default_hostname = "styx.verver.ch";
constexpr const char *default_portname = "7429";
// Number of threads to use for calculations. 0 to disable multithreading.
int num_threads = std::thread::hardware_concurrency();
std::optional<RnAccessor> acc; // r(N-2).bin
std::optional<EFAccessor> pot_loss_acc; // rN-pot-loss.bin
int initialized_phase = -1;
std::function<std::optional<Client>()> client_factory = []() {
return std::optional<Client>();
};
const std::string PotentialLossesFilename(int phase) {
std::ostringstream oss;
oss << "input/r" << phase << "-pot-loss.bin";
return oss.str();
}
const std::string ChunkOutputFilename(int phase, int chunk) {
std::ostringstream oss;
oss << "output/chunk-r" << phase << "-" << std::setfill('0') << std::setw(4) << chunk << "-two.bin";
return oss.str();
}
// Note: may be called more than once (whenever the active phase changes).
void InitPhase(int phase) {
if (phase == initialized_phase) {
// Initializaiton already complete.
return;
}
if (phase < 2 || phase % 2 != 0) {
std::cerr << "Invalid phase number: " << phase << "!" << std::endl;
exit(1);
}
std::cerr << "Initializing solver for phase " << phase << "..." << std::endl;
// Open input/r(N-2).bin
acc.emplace(PreparePhaseInput(phase, client_factory).c_str());
int failures = VerifyInputChunks(phase - 2, acc.value());
if (failures != 0) exit(1);
// Open input/rN-pot-loss.bin
const std::string pot_loss_filename = PotentialLossesFilename(phase);
pot_loss_acc = EFAccessor(pot_loss_filename.c_str());
assert(pot_loss_acc->PartCount() == num_chunks);
std::cerr << "Initialization complete!" << std::endl;
initialized_phase = phase;
}
//
// Loss computation logic starts here.
//
struct ChunkStats1 {
// Number of recomputed values (TIE) that were changed to LOSS.
int64_t changed = 0;
// Number of recomputed values (TIE) that were unchanged (remained TIE).
int64_t unchanged = 0;
void Merge(const ChunkStats1 &s) {
changed += s.changed;
unchanged += s.unchanged;
}
};
void ComputeLoss(
int64_t perm_index, const Perm &perm,
std::vector<int64_t> *losses, ChunkStats1 *stats) {
// Only check undetermined positions.
Outcome o = (*acc)[perm_index];
assert(o == TIE);
// A permutation is losing if all successors are winning (for the opponent).
// So we can abort the search as soon as we find one non-winning successor.
bool complete = GenerateSuccessors(perm, [](const Moves&, const State& state) {
// If there is an immediately winning/losing move, we should have skipped the computation.
assert(state.outcome == TIE);
Outcome p = (*acc)[IndexOf(state.perm)];
assert(p != LOSS);
return p == WIN;
});
if (!complete) {
++stats->unchanged;
return;
}
++stats->changed;
losses->push_back(perm_index);
}
void ComputeLossesThread(
int chunk,
const std::vector<int64_t> *potential_losses,
std::atomic<size_t> *next_index,
std::vector<int64_t> *losses,
ChunkStats1 *stats) {
for (;;) {
size_t i = (*next_index)++;
if (i + 1 >= num_threads && (i + 1 - num_threads) % 10000 == 0) {
PrintChunkUpdate(chunk, i + 1 - num_threads, potential_losses->size());
}
if (i >= potential_losses->size()) break; // note: will actually exceed size!
int64_t perm_index = potential_losses->at(i);
Perm perm = PermAtIndex(perm_index);
ComputeLoss(perm_index, perm, losses, stats);
}
}
ChunkStats1 ComputeLosses(
int chunk,
const std::vector<int64_t> &potential_losses,
std::vector<int64_t> &losses) {
std::atomic<size_t> next_index = 0;
ChunkStats1 stats;
if (num_threads == 0) {
// Single-threaded computation.
ComputeLossesThread(chunk, &potential_losses, &next_index, &losses, &stats);
} else {
// Multi-threaded computation.
std::vector<std::thread> threads;
std::vector<std::vector<int64_t>> thread_losses(num_threads);
std::vector<ChunkStats1> thread_stats(num_threads);
threads.reserve(num_threads);
REP(i, num_threads) {
threads.emplace_back(ComputeLossesThread, chunk, &potential_losses, &next_index,
&thread_losses[i], &thread_stats[i]);
}
REP(i, num_threads) {
threads[i].join();
losses.insert(losses.end(), thread_losses[i].begin(), thread_losses[i].end());
stats.Merge(thread_stats[i]);
}
assert(next_index == potential_losses.size() + num_threads);
}
ClearChunkUpdate();
std::sort(losses.begin(), losses.end());
assert(std::unique(losses.begin(), losses.end()) == losses.end());
return stats;
}
// Win computation logic starts here. This is equivalent backpropgate2.cc
struct ChunkStats2 {
int64_t total_predecessors = 0;
void Merge(const ChunkStats2 &s) {
total_predecessors += s.total_predecessors;
}
};
void BackpropagateLoss(
int64_t perm_index, const Perm &perm,
std::vector<int64_t> *wins, ChunkStats2 *stats) {
assert((*acc)[perm_index] == TIE);
GeneratePredecessors(perm, [stats, wins](const Perm &pred){
++stats->total_predecessors;
int64_t pred_index = IndexOf(pred);
Outcome o = (*acc)[pred_index];
if (o == TIE) {
wins->push_back(pred_index);
} else {
assert(o == WIN);
}
});
}
void ComputeWinsThread(
int chunk, const std::vector<int64_t> *losses, std::atomic<size_t> *next_loss,
std::vector<int64_t> *wins, ChunkStats2 *stats) {
const size_t num_losses = losses->size();
for (;;) {
size_t i = (*next_loss)++;
if (i + 1 >= num_threads) {
int progress = i + 1 - num_threads;
if (progress % 1000 == 0) PrintChunkUpdate(chunk, progress, num_losses);
}
if (i >= num_losses) break; // note: will actually exceed losses.size()!
int64_t perm_index = (*losses)[i];
Perm perm = PermAtIndex(perm_index);
BackpropagateLoss(perm_index, perm, wins, stats);
}
SortAndDedupe(*wins);
}
ChunkStats2 ComputeWins(
int chunk, const std::vector<int64_t> &losses,
std::vector<int64_t> &wins) {
std::atomic<size_t> next_loss = 0;
ChunkStats2 stats;
if (num_threads == 0) {
// Single-threaded computation.
ComputeWinsThread(chunk, &losses, &next_loss, &wins, &stats);
assert(next_loss == losses.size() + 1);
} else {
// Multi-threaded computation.
std::vector<std::thread> threads;
std::vector<std::vector<int64_t>> thread_wins(num_threads);
std::vector<ChunkStats2> thread_stats(num_threads);
threads.reserve(num_threads);
REP(i, num_threads) {
threads.emplace_back(
ComputeWinsThread, chunk, &losses, &next_loss,
&thread_wins[i], &thread_stats[i]);
}
REP(i, num_threads) {
threads[i].join();
wins.insert(wins.end(), thread_wins[i].begin(), thread_wins[i].end());
stats.Merge(thread_stats[i]);
}
assert(next_loss == losses.size() + num_threads);
}
ClearChunkUpdate();
SortAndDedupe(wins);
return stats;
}
// Combined logic continues here.
bytes_t ComputeChunk(int phase, int chunk) {
InitPhase(phase);
auto start_time = std::chrono::system_clock::now();
const std::vector<int64_t> potential_losses = pot_loss_acc->GetPart(chunk);
std::vector<int64_t> losses;
if (!potential_losses.empty()) {
ChunkStats1 stats1 = ComputeLosses(chunk, potential_losses, losses);
std::cerr << "Loss computation stats: "
<< stats1.unchanged << " unchanged. "
<< stats1.changed << " new losses. " << std::endl;
}
std::vector<int64_t> wins;
if (!losses.empty()) {
ChunkStats2 stats2 = ComputeWins(chunk, losses, wins);
std::cerr << "Win computation stats: "
<< wins.size() << " new wins. "
<< stats2.total_predecessors / losses.size() << " average predecessors.";
std::cerr << '\n';
}
bytes_t result;
EncodeEF(losses, result);
EncodeEF(wins, result);
std::chrono::duration<double> elapsed_seconds = std::chrono::system_clock::now() - start_time;
std::cerr << "Chunk " << chunk << " done in " << elapsed_seconds.count() << " seconds. " << std::endl;
return result;
}
void RunManually(int phase, int start_chunk, int end_chunk) {
std::cout << "Calculating " << end_chunk - start_chunk
<< " R" << phase - 1 << "+R" << phase << " chunks "
<< "from " << start_chunk << " to " << end_chunk << " (exclusive) "
<< "using " << num_threads << " threads." << std::endl;
FOR(chunk, start_chunk, end_chunk) {
const std::string filename = ChunkOutputFilename(phase, chunk);
if (std::filesystem::exists(filename)) {
std::cerr << "Chunk " << chunk << " already exists. Skipping..." << std::endl;
continue;
}
WriteToFile(filename, ComputeChunk(phase, chunk));
}
}
void PrintUsage() {
std::cout << solver_id << "\n\n"
<< "For manual chunk assignment:\n\n"
<< " solve3 [--phase=N] --start=<start-chunk> --end=<end-chunk>\n\n"
<< "For automatic chunk assignment (requires network access):\n\n"
<< " solve3 [--phase=N] --user=<user-id> --machine=<machine-id>\n"
<< " [--host=" << default_hostname << "] [--port=" << default_portname << "]\n"
<< std::endl;
}
} // namespace
int main(int argc, char *argv[]) {
std::string arg_phase;
std::string arg_start;
std::string arg_end;
std::string arg_host = default_hostname;
std::string arg_port = default_portname;
std::string arg_user;
std::string arg_machine;
std::map<std::string, Flag> flags = {
{"phase", Flag::optional(arg_phase)},
// For manual chunk assignment
{"start", Flag::optional(arg_start)},
{"end", Flag::optional(arg_end)},
// For automatic chunk assignment
{"host", Flag::optional(arg_host)},
{"port", Flag::optional(arg_port)},
{"user", Flag::optional(arg_user)},
{"machine", Flag::optional(arg_machine)},
};
if (argc == 1) {
PrintUsage();
return 0;
}
if (!ParseFlags(argc, argv, flags)) {
std::cout << "\n";
PrintUsage();
return 1;
}
if (argc > 1) {
std::cout << "Too many arguments!\n\n";
PrintUsage();
return 1;
}
bool want_manual = !arg_start.empty() || !arg_end.empty();
bool want_automatic = !arg_user.empty() || !arg_machine.empty();
if ((!want_manual && !want_automatic) || (want_manual && want_automatic)) {
std::cout << "Must provide either --start and --end flags, "
<< "or --user and --machine flags, but not both!\n\n";
PrintUsage();
return 1;
}
std::optional<int> phase;
if (!arg_phase.empty()) {
int i = ParseInt(arg_phase.c_str());
if (i < 2) {
std::cout << "Invalid phase. Must be 2 or higher.\n";
return 1;
}
if (i % 2 != 0) {
std::cout << "Invalid phase. Must be an even number.\n";
return 1;
}
phase = i;
}
if (want_manual) {
if (!phase) {
std::cout << "Must specify the phase when running manually.\n";
return 1;
}
if (arg_start.empty() || arg_end.empty()) {
std::cout << "Must provide both start and end chunks.\n";
return 1;
}
int start_chunk = std::max(ParseInt(arg_start.c_str()), 0);
int end_chunk = std::min(ParseInt(arg_end.c_str()), num_chunks);
RunManually(phase.value(), start_chunk, end_chunk);
} else {
assert(want_automatic);
if (arg_user.empty() || arg_machine.empty()) {
std::cout << "Must provide both user and machine flags.\n";
return 1;
}
client_factory = [host=arg_host, port=arg_port, user=arg_user, machine=arg_machine]() {
if (auto client = Client::Connect(host.c_str(), port.c_str(), solver_id, user, machine); !client) {
std::cerr << "Failed to connect: " << client.Error().message << std::endl;
return std::optional<Client>();
} else {
return std::optional<Client>(std::move(*client));
}
};
AutomaticSolver solver(
solver_id, arg_host, arg_port, arg_user, arg_machine,
ChunkOutputFilename,
ComputeChunk,
phase);
solver.Run();
}
}