-
Notifications
You must be signed in to change notification settings - Fork 50
/
ragtag_scaffold.py
577 lines (494 loc) · 25 KB
/
ragtag_scaffold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#!/usr/bin/env python
"""
MIT License
Copyright (c) 2021 Michael Alonge <malonge11@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import os
import sys
import argparse
from collections import defaultdict
import pysam
from ragtag_utilities.utilities import log, run_oae, get_ragtag_version
from ragtag_utilities.AlignmentReader import PAFReader
from ragtag_utilities.ContigAlignment import ContigAlignment
from ragtag_utilities.AGPFile import AGPFile
from ragtag_utilities.Aligner import Minimap2Aligner
from ragtag_utilities.Aligner import UnimapAligner
from ragtag_utilities.Aligner import NucmerAligner
def remove_contained(a):
"""
remove contained intervals
:param a: list of tuples (start, end, header)
:return: intervals with contained intervals removed
"""
o = []
a = sorted(a, key=lambda x: (x[0], -x[1]))
max_end = -1
for i in a:
if i[1] > max_end:
max_end = i[1]
o.append(i)
return o
def write_orderings(out_agp_file, out_confidence_file, query_file, ordering_dict, ctg_dict, gap_dict, gap_type_dict, make_chr0, overwrite, add_suffix, skip_no_cat):
# Check if the output file already exists
if os.path.isfile(out_agp_file):
if not overwrite:
log("INFO", "Retaining pre-existing file: " + out_agp_file)
return
else:
log("INFO", "Overwriting pre-existing file: " + out_agp_file)
# Proceed with writing the intermediate output
placed_seqs = set()
all_out_cs_lines = [] # For confidence scores
agp = AGPFile(out_agp_file, mode="w")
agp.add_pragma()
agp.add_comment("# AGP created by RagTag {}".format(get_ragtag_version()))
# Go through the reference sequences in sorted order
sorted_ref_headers = sorted(list(ordering_dict.keys()))
for ref_header in sorted_ref_headers:
pid = 1
pos = 0
new_ref_header = ref_header + "_RagTag"
q_seqs = ordering_dict[ref_header]
gap_seqs = gap_dict[ref_header]
gap_types = gap_type_dict[ref_header]
# Iterate through the query sequences for this reference header
for i in range(len(q_seqs)):
out_agp_line = []
out_cs_line = []
q = q_seqs[i][2]
placed_seqs.add(q)
qlen = ctg_dict[q].query_len
strand = ctg_dict[q].orientation
gc, lc, oc = ctg_dict[q].grouping_confidence, ctg_dict[q].location_confidence, ctg_dict[q].orientation_confidence
out_agp_line.append(new_ref_header)
out_agp_line.append(str(pos+1))
pos += qlen
out_agp_line.append(str(pos))
out_agp_line.append(str(pid))
out_agp_line.append("W")
out_agp_line.append(q)
out_agp_line.append("1")
out_agp_line.append(str(ctg_dict[q].query_len))
out_agp_line.append(strand)
# Save the confidence score info
out_cs_line.append(q)
out_cs_line.append(str(gc))
out_cs_line.append(str(lc))
out_cs_line.append(str(oc))
agp.add_seq_line(*out_agp_line)
all_out_cs_lines.append("\t".join(out_cs_line))
pid += 1
if i < len(gap_seqs):
# Print the gap line
out_agp_line = []
out_agp_line.append(new_ref_header)
out_agp_line.append(str(pos+1))
pos += gap_seqs[i]
out_agp_line.append(str(pos))
out_agp_line.append(str(pid))
gap_type = gap_types[i]
out_agp_line.append(gap_type)
out_agp_line.append(str(gap_seqs[i]))
out_agp_line.append("scaffold")
out_agp_line.append("yes")
out_agp_line.append("align_genus")
pid += 1
agp.add_gap_line(*out_agp_line)
# Write unplaced sequences
fai = pysam.FastaFile(query_file)
all_seqs = set(fai.references)
unplaced_seqs = sorted(list(all_seqs - placed_seqs))
if unplaced_seqs:
if make_chr0:
cat_seqs = all_seqs - placed_seqs - skip_no_cat
if cat_seqs:
pos = 0
pid = 1
new_ref_header = "Chr0_RagTag"
for q in sorted(list(cat_seqs)):
out_agp_line = []
qlen = fai.get_reference_length(q)
out_agp_line.append(new_ref_header)
out_agp_line.append(str(pos+1))
pos += qlen
out_agp_line.append(str(pos))
out_agp_line.append(str(pid))
out_agp_line.append("W")
out_agp_line.append(q)
out_agp_line.append("1")
out_agp_line.append(str(qlen))
out_agp_line.append("+")
agp.add_seq_line(*out_agp_line)
pid += 1
# Now for the gap, since we are making a chr0
out_agp_line = []
out_agp_line.append(new_ref_header)
out_agp_line.append(str(pos+1))
pos += 100
out_agp_line.append(str(pos))
out_agp_line.append(str(pid))
out_agp_line = out_agp_line + ["U", "100", "contig", "no", "na"]
agp.add_gap_line(*out_agp_line)
pid += 1
# Remove the final unnecessary gap
agp.pop_agp_line()
if skip_no_cat:
# List these unplaced contigs individually
for q in sorted(list(skip_no_cat)):
out_agp_line = []
qlen = fai.get_reference_length(q)
if add_suffix:
out_agp_line.append(q + "_RagTag")
else:
out_agp_line.append(q)
out_agp_line.append("1")
out_agp_line.append(str(qlen))
out_agp_line.append("1")
out_agp_line.append("W")
out_agp_line.append(q)
out_agp_line.append("1")
out_agp_line.append(str(qlen))
out_agp_line.append("+")
agp.add_seq_line(*out_agp_line)
else:
# List the unplaced contigs individually
for q in unplaced_seqs:
out_agp_line = []
qlen = fai.get_reference_length(q)
if add_suffix:
out_agp_line.append(q + "_RagTag")
else:
out_agp_line.append(q)
out_agp_line.append("1")
out_agp_line.append(str(qlen))
out_agp_line.append("1")
out_agp_line.append("W")
out_agp_line.append(q)
out_agp_line.append("1")
out_agp_line.append(str(qlen))
out_agp_line.append("+")
agp.add_seq_line(*out_agp_line)
agp.write()
fai.close()
# Write the confidence scores
with open(out_confidence_file, "w") as f:
f.write("query\tgrouping_confidence\tlocation_confidence\torientation_confidence\n")
f.write("\n".join(all_out_cs_lines) + "\n")
def read_genome_alignments(aln_file, query_blacklist, ref_blacklist):
tmp_ctg_alns = dict()
aln_reader = PAFReader(aln_file)
for aln_line in aln_reader.parse_alignments():
# Check that the contig and reference in this alignment are allowed.
if aln_line.query_header not in query_blacklist and aln_line.ref_header not in ref_blacklist:
if aln_line.query_header not in tmp_ctg_alns:
tmp_ctg_alns[aln_line.query_header] = [aln_line.query_header, aln_line.query_len,
[aln_line.query_start], [aln_line.query_end], [aln_line.strand],
[aln_line.ref_header], [aln_line.ref_len],
[aln_line.ref_start], [aln_line.ref_end],
[aln_line.num_match], [aln_line.aln_len],
[aln_line.mapq]]
else:
tmp_ctg_alns[aln_line.query_header][2].append(aln_line.query_start)
tmp_ctg_alns[aln_line.query_header][3].append(aln_line.query_end)
tmp_ctg_alns[aln_line.query_header][4].append(aln_line.strand)
tmp_ctg_alns[aln_line.query_header][5].append(aln_line.ref_header)
tmp_ctg_alns[aln_line.query_header][6].append(aln_line.ref_len)
tmp_ctg_alns[aln_line.query_header][7].append(aln_line.ref_start)
tmp_ctg_alns[aln_line.query_header][8].append(aln_line.ref_end)
tmp_ctg_alns[aln_line.query_header][9].append(aln_line.num_match)
tmp_ctg_alns[aln_line.query_header][10].append(aln_line.aln_len)
tmp_ctg_alns[aln_line.query_header][11].append(aln_line.mapq)
ctg_alns = dict()
for i in tmp_ctg_alns:
ctg_alns[i] = ContigAlignment(
tmp_ctg_alns[i][0],
tmp_ctg_alns[i][1],
tmp_ctg_alns[i][2],
tmp_ctg_alns[i][3],
tmp_ctg_alns[i][4],
tmp_ctg_alns[i][5],
tmp_ctg_alns[i][6],
tmp_ctg_alns[i][7],
tmp_ctg_alns[i][8],
tmp_ctg_alns[i][9],
tmp_ctg_alns[i][10],
tmp_ctg_alns[i][11]
)
return ctg_alns
def main():
description = "Homology-based assembly scaffolding: Order and orient sequences in 'query.fa' by comparing them to " \
"sequences in 'reference.fa'"
parser = argparse.ArgumentParser(description=description, usage="ragtag.py scaffold <reference.fa> <query.fa>")
parser.add_argument("reference", metavar="<reference.fa>", nargs='?', default="", type=str, help="reference fasta file (uncompressed or bgzipped)")
parser.add_argument("query", metavar="<query.fa>", nargs='?', default="", type=str, help="query fasta file (uncompressed or bgzipped)")
scaf_options = parser.add_argument_group("scaffolding options")
scaf_options.add_argument("-e", metavar="<exclude.txt>", type=str, default="", help="list of reference sequences to ignore [null]")
scaf_options.add_argument("-j", metavar="<skip.txt>", type=str, default="", help="list of query sequences to leave unplaced [null]")
scaf_options.add_argument("-J", metavar="<hard-skip.txt>", type=str, default="", help="list of query headers to leave unplaced and exclude from 'chr0' ('-C') [null]")
scaf_options.add_argument("-f", metavar="INT", type=int, default=1000, help="minimum unique alignment length [1000]")
scaf_options.add_argument("--remove-small", action="store_true", default=False, help="remove unique alignments shorter than '-f'")
scaf_options.add_argument("-q", metavar="INT", type=int, default=10, help="minimum mapq (NA for Nucmer alignments) [10]")
scaf_options.add_argument("-d", metavar="INT", type=int, default=100000, help="maximum alignment merge distance [100000]")
scaf_options.add_argument("-i", metavar="FLOAT", type=float, default=0.2, help="minimum grouping confidence score [0.2]")
scaf_options.add_argument("-a", metavar="FLOAT", type=float, default=0.0, help="minimum location confidence score [0.0]")
scaf_options.add_argument("-s", metavar="FLOAT", type=float, default=0.0, help="minimum orientation confidence score [0.0]")
scaf_options.add_argument("-C", action='store_true', default=False, help="concatenate unplaced contigs and make 'chr0'")
scaf_options.add_argument("-r", action='store_true', default=False, help="infer gap sizes. if not, all gaps are 100 bp")
scaf_options.add_argument("-g", metavar="INT", type=int, default=100, help="minimum inferred gap size [100]")
scaf_options.add_argument("-m", metavar="INT", type=int, default=100000, help="maximum inferred gap size [100000]")
io_options = parser.add_argument_group("input/output options")
io_options.add_argument("-o", metavar="PATH", type=str, default="ragtag_output", help="output directory [./ragtag_output]")
io_options.add_argument("-w", action='store_true', default=False, help="overwrite intermediate files")
io_options.add_argument("-u", action='store_true', default=False, help="add suffix to unplaced sequence headers")
io_options.add_argument("--debug", action='store_true', default=False, help=argparse.SUPPRESS)
aln_options = parser.add_argument_group("mapping options")
aln_options.add_argument("-t", metavar="INT", type=int, default=1, help="number of minimap2/unimap threads [1]")
aln_options.add_argument("--aligner", metavar="PATH", type=str, default="minimap2", help="aligner executable ('nucmer', 'unimap' or 'minimap2') [minimap2]")
mm2_default = "-x asm5"
aln_options.add_argument("--mm2-params", metavar="STR", type=str, default=mm2_default, help="space delimited minimap2 parameters (overrides '-t') ['%s']" % mm2_default)
aln_options.add_argument("--unimap-params", metavar="STR", type=str, default=mm2_default, help="space delimited unimap parameters (overrides '-t') ['%s']" % mm2_default)
aln_options.add_argument("--nucmer-params", metavar="STR", type=str, default="--maxmatch -l 100 -c 500", help="space delimted nucmer parameters ['--maxmatch -l 100 -c 500']")
args = parser.parse_args()
if not args.reference or not args.query:
parser.print_help()
sys.exit("\n** The reference and query FASTA files are required **")
log("VERSION", "RagTag " + get_ragtag_version())
log("CMD", "ragtag.py scaffold " + " ".join(sys.argv[1:]))
reference_file = os.path.abspath(args.reference)
query_file = os.path.abspath(args.query)
# Check that the reference/query file exists
if not os.path.isfile(reference_file):
raise FileNotFoundError("Could not find file: %s" % reference_file)
if not os.path.isfile(query_file):
raise FileNotFoundError("Could not find file: %s" % query_file)
min_ulen = args.f
keep_small_uniques = not args.remove_small
merge_dist = args.d
group_score_thresh = args.i
loc_score_thresh = args.a
orient_score_thresh = args.s
make_chr0 = args.C
infer_gaps = args.r
num_threads = args.t
# I/O options
output_path = args.o
if not os.path.isdir(output_path):
os.mkdir(output_path)
output_path = os.path.abspath(output_path) + "/"
file_prefix = "ragtag.scaffold"
# Setup a log file for external RagTag scripts
ragtag_log = output_path + file_prefix + ".err"
open(ragtag_log, "w").close() # Wipe the log file
overwrite_files = args.w
remove_suffix = not args.u
if remove_suffix:
log("WARNING", "Without '-u' invoked, some component/object AGP pairs might share the same ID. Some external programs/databases don't like this. To ensure valid AGP format, use '-u'.")
# Gap options
min_gap_size = args.g
max_gap_size = args.m
if min_gap_size < 1:
raise ValueError("the minimum gap size must be positive")
if max_gap_size < 1:
raise ValueError("the maximum gap size must be positive")
# Skip/exclude options
query_blacklist = set()
skip_file = args.j
if skip_file:
skip_file = os.path.abspath(skip_file)
with open(skip_file, "r") as f:
for line in f:
query_blacklist.add(line.rstrip())
skip_no_cat = set()
skip_no_cat_file = args.J
if skip_no_cat_file:
skip_no_cat_file = os.path.abspath(skip_no_cat_file)
with open(skip_no_cat_file, "r") as f:
for line in f:
skip_no_cat.add(line.rstrip())
query_blacklist = query_blacklist.union(skip_no_cat)
ref_blacklist = set()
exclude_file = args.e
if exclude_file:
exclude_file = os.path.abspath(args.e)
with open(exclude_file, "r") as f:
for line in f:
ref_blacklist.add(line.rstrip())
# Get aligner arguments
aligner_path = args.aligner
aligner = aligner_path.split("/")[-1]
if aligner.split("/")[-1] not in {'minimap2', 'unimap', 'nucmer'}:
raise ValueError("Must specify either 'minimap2', 'unimap', or 'nucmer' (PATHs allowed) with '--aligner'.")
mm2_params = args.mm2_params
unimap_params = args.unimap_params
nucmer_params = args.nucmer_params
# Mapq filtering params
min_mapq = args.q
if aligner == "nucmer":
min_mapq = 0
# Add the number of mm2/unimap threads if the mm2 params haven't been overridden.
if mm2_params == mm2_default:
mm2_params += " -t " + str(num_threads)
if unimap_params == mm2_default:
unimap_params += " -t " + str(num_threads)
# Debugging options
debug_mode = args.debug
debug_non_fltrd_file = output_path + file_prefix + ".debug.unfiltered.paf"
debug_fltrd_file = output_path + file_prefix + ".debug.filtered.paf"
debug_merged_file = output_path + file_prefix + ".debug.merged.paf"
debug_query_info_file = output_path + file_prefix + ".debug.query.info.txt"
# Align the query to the reference
log("INFO", "Mapping the query genome to the reference genome")
if aligner == "minimap2":
al = Minimap2Aligner(reference_file, [query_file], aligner_path, mm2_params, output_path + file_prefix + ".asm", in_overwrite=overwrite_files)
elif aligner == "unimap":
al = UnimapAligner(reference_file, [query_file], aligner_path, unimap_params, output_path + file_prefix + ".asm", in_overwrite=overwrite_files)
else:
al = NucmerAligner(reference_file, [query_file], aligner_path, nucmer_params, output_path + file_prefix + ".asm", in_overwrite=overwrite_files)
al.run_aligner()
# If alignments are from Nucmer, need to convert from delta to paf
if aligner == "nucmer":
cmd = ["ragtag_delta2paf.py", output_path + file_prefix + ".asm.delta"]
run_oae(cmd, output_path + file_prefix + ".asm.paf", ragtag_log)
# Read and organize the alignments
log("INFO", "Reading whole genome alignments")
# ctg_alns: query header -> ContigAlignment object
ctg_alns = read_genome_alignments(output_path + file_prefix + ".asm.paf", query_blacklist, ref_blacklist)
# Filter the alignments
if debug_mode:
# create new empty copies of debugging output files
open(debug_non_fltrd_file, "w").close()
open(debug_fltrd_file, "w").close()
open(debug_merged_file, "w").close()
open(debug_query_info_file, "w").close()
log("INFO", "Filtering and merging alignments")
for i in ctg_alns:
# Write unfiltered alignments
if debug_mode:
with open(debug_non_fltrd_file, "a") as f:
f.write(str(ctg_alns[i]))
ctg_alns[i] = ctg_alns[i].unique_anchor_filter(min_ulen, keep_small=keep_small_uniques)
if ctg_alns[i] is not None:
ctg_alns[i] = ctg_alns[i].filter_mapq(min_mapq)
if ctg_alns[i] is not None:
# Write filtered alignments
if debug_mode:
with open(debug_fltrd_file, "a") as f:
f.write(str(ctg_alns[i]))
ctg_alns[i] = ctg_alns[i].merge_alns(merge_dist=merge_dist, careful_merge=True)
# Remove query sequences which have no more qualifying alignments
fltrd_ctg_alns = dict()
for i in ctg_alns:
if ctg_alns[i] is not None:
# Write merged alignments and confidence scores
if debug_mode:
with open(debug_merged_file, "a") as f:
f.write(str(ctg_alns[i]))
with open(debug_query_info_file, "a") as f:
f.write("\t".join([
i,
ctg_alns[i].best_ref_header,
str(ctg_alns[i].grouping_confidence),
str(ctg_alns[i].location_confidence),
str(ctg_alns[i].orientation_confidence),
]) + "\n")
if all([
ctg_alns[i].grouping_confidence > group_score_thresh,
ctg_alns[i].location_confidence > loc_score_thresh,
ctg_alns[i].orientation_confidence > orient_score_thresh
]):
fltrd_ctg_alns[i] = ctg_alns[i]
# Check if any alignments are left
if not fltrd_ctg_alns:
raise RuntimeError("There are no useful alignments. Check output alignment files.")
# For each reference sequence which has at least one assigned query sequence, get the list of
# all query sequences assigned to that reference sequence.
log("INFO", "Ordering and orienting query sequences")
mapped_ref_seqs = defaultdict(list)
for i in fltrd_ctg_alns:
best_ref = fltrd_ctg_alns[i].best_ref_header
ref_start, ref_end = fltrd_ctg_alns[i].get_best_ref_pos()
mapped_ref_seqs[best_ref].append((ref_start, ref_end, i))
# Sort the query sequences for each reference sequence and define the padding sizes between adjacent query seqs
g_inferred = 0
g_small = 0
g_large = 0
pad_sizes = dict()
gap_types = dict()
for i in mapped_ref_seqs:
# Remove contained contigs and sort the rest
non_contained = remove_contained(mapped_ref_seqs[i])
mapped_ref_seqs[i] = sorted(non_contained)
if infer_gaps:
# Infer the gap sizes between adjacent query seqs
# Use the primary alignments to infer gap sizes
pad_sizes[i] = []
gap_types[i] = []
for j in range(1, len(mapped_ref_seqs[i])):
# Get info for the upstream alignment
left_ctg = mapped_ref_seqs[i][j - 1][2]
left_ref_start, left_ref_end = fltrd_ctg_alns[left_ctg].get_best_ref_pos()
left_qdist_start, left_qdist_end = fltrd_ctg_alns[left_ctg].get_best_q_dist()
# Get info for the downstream alignment
right_ctg = mapped_ref_seqs[i][j][2]
right_ref_start, right_ref_end = fltrd_ctg_alns[right_ctg].get_best_ref_pos()
right_qdist_start, right_qdist_end = fltrd_ctg_alns[right_ctg].get_best_q_dist()
# Get the inferred gap size
i_gap_size = (right_ref_start - right_qdist_start) - (left_ref_end + left_qdist_end)
# Check if the gap size is too small or too large
if i_gap_size <= min_gap_size:
pad_sizes[i].append(100)
gap_types[i].append("U")
g_small += 1
elif i_gap_size > max_gap_size:
pad_sizes[i].append(100)
gap_types[i].append("U")
g_large += 1
else:
pad_sizes[i].append(i_gap_size)
gap_types[i].append("N")
g_inferred += 1
else:
pad_sizes[i] = [100 for i in range(len(mapped_ref_seqs[i])-1)]
gap_types[i] = ["U" for i in range(len(mapped_ref_seqs[i])-1)]
if infer_gaps:
log("INFO", "%d inferred gap" % g_inferred)
log("INFO", "%d adjacent contig within min distance (%d) of each other" % (g_small, min_gap_size))
log("INFO", "%d inferred gaps exceed length threshold (%d)" % (g_large, max_gap_size))
# Write the scaffolds
log("INFO", "Writing scaffolds")
# Write the intermediate output file in AGP v2.1 format
log("INFO", "Writing: " + output_path + file_prefix + ".agp")
write_orderings(output_path + file_prefix + ".agp", output_path + file_prefix + ".confidence.txt", query_file, mapped_ref_seqs, fltrd_ctg_alns, pad_sizes, gap_types, make_chr0, True, not remove_suffix, skip_no_cat)
# Build a FASTA from the AGP
cmd = [
"ragtag_agp2fa.py",
output_path + file_prefix + ".agp",
query_file
]
run_oae(cmd, output_path + file_prefix + ".fasta", ragtag_log)
# Calculate the stats
cmd = [
"ragtag_stats.py",
output_path + file_prefix + ".agp",
output_path + file_prefix + ".confidence.txt"
]
run_oae(cmd, output_path + file_prefix + ".stats", ragtag_log)
log("INFO", "Goodbye")
if __name__ == "__main__":
main()